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ADDENDUM

LOW COST ANTI-JAM DIGITAL DATA-LINKS TECHNIQUES INVESTIGATIONS

AFAL-TR-77-104, VOLUME II

MAY 1979

This addendum contains results which were completed too late for in-

clusion in the main part of the Interim Report. These results should prop-

erly have been included in Section IV., 1. However, the nature of the re-

sults is such that none of the findings or conclusions of the report are

subject to change.

The Monte Carlo simulation routine, described in [l], was modified to

include DPSK as a signal option, along with PSK and FSK. A random sequence

of binary symbols was generated as usual. However, these symbols were then

differentially encoded as per Table 1. At the receiver, several detectors

were implemented. These included the standard detector for PSK and the IDEI

detector for PSK. Also, the standard detector for DPSK was implemented,

based on equations (78) - (83). Finally, an IDEI DPSK detector was imple-

mented, using the IDEI-PSK detector and differential decoding.

Figure 49 shows the "calibration curve" for the various detectors.

This graph serves the same purpose as Figure 7 and shows the Monte Carlo

performances of the standard PSK detector, IDEI detector with differential

decoding and standard DPSK detector, respectively, for white noise only.

It is seen that the results appear the same as those in [10] and [13].

Figure 50 shows the results for multiplicative noise equal in strength

to the desired signal, with a low-pass equivalent noise bandwidth of 275 Hz.

This is the same "diffuse Doppler-spread multipath" disturbance as was used

in Figure 9. The error rates for IDEI and standard detectors for PSK in

Figure 50 fall upon those in Figure 9. The standard DPSK error rate is a

little better than that for PSK, however the DPSK error rate is still sat-

urated and unusable. The error rate for the IDEI detector using differen-

tial decoding is slightly worse than that for PSK, but this is to be expected.

The explanation for the poor performance of standard DPSK in this mul-

tiplicative noise environment is that the disturbance causes the received

signal phase to violate the "slow-phase" restriction inherent in the deriv-

ation of the standard DPSK detection algorithm. Indeed, the phase-jitter

process has a bandwidth of at least 275 Hz. which is not slow compared to

the symbol rate of 2,500 BPS.
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The performance of the IDEI detector is good, not because of the dif-

ferential decoding, but because the equivalent phase disturbance on the

received signal is being tracked out by the IDEI detector.

It should be recalled that the IDEI detector is being furnished with

an unperturbed phase reference locked to that of the transmitted signal.

However, it has been shown in a previous investigation [3] that the IDEI

detector also tracks out phase reference perturbations due to the multipli-

cative noise effects on the carrier phase-locked loop, without an increase

in error-rate. Thus the present IDEI results are valid for multiplicative

noise with jittery phase reference.

Based on the above, two conclusions are clear. DPSK with a standard

detector is unusable in diffuse aeronautical multipath due to violation of

the "slow-phase" restriction on the standard DPSK detector. DPSK is un-

necessary in diffuse aeronautical multipath if an IDEI detector is used,

since PSK provides better performance.
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PREFACE

From 1971 through 1973, a new sampled-data processing technique for

anti-multipath reception of aeronautical data-link signals was developed,

and subsequently patented by the Principal Investigator, at NASA Langley

Research Center. In 1974 a contract was issued by the Air Force Avionics

Laboratory to determine if the same technique which provided processing gain

against diffuse Doppler-spread multipath perturbations could be modified

for use in anti-jam processing.

Anti-jam processing algorithms were produced under the 1974 contract,

as well as a Monte Carlo simulation package for evaluating the performance

of the algorithms. The contract was extended in 1976 for the purpose of

making an exhaustive performance evaluation of the new processing algorithms.

The present report gives the results of the performance evaluation conducted

during the period from October 1976 through February 1978.

The results of the performance evaluation have been favorable toward

continued development of the A-J processing technique. Further investiga-

tions have been identified and the contract has been extended for a further

period. The present results have shown the A-J processing gain which is

available through the new technique. Future efforts will be devoted to

means for realizing this gain.
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SECTION I

INTRODUCTION

This is a report on the second phase of an investigation into new

techniques for communicating digital data between two terminals in an en-

vironment subject to multiplicative and additive colored noise and additive

white noise. The multiplicative noise is a model for non-frequency-selec-

tive fading due to Doppler-spreading such as caused by diffuse multipath

reflections. The additive colored noise is a model for radio-frequency

interference or jamming.

The communication technique being investigated is a receiver-based

processing technique for standard signal modulations such as Phase-Shift-

Keying, Frequency-Shift-Keying and Differential-Phase-Shift-Keying. The

technique does not require the use of Spread-Spectrum modulations. The

particular processing used is called Integrated Detection, Estimation, and

Identification (IDEI). It is nearly optimum, under the minimum probability

of error criterion, for M-ary signalling in additive and multiplicative

Gaussian noise.

The results of the first phase of the investigation were documented

in [1]. In that phase the optimum IDEI algorithms were derived and an

elaborate Monte Carlo simulation package was written for testing the algo-

rithms for PSK and FSK binary signals. The purposes of the second phase

of effort were several. First, it was required to determine the best per-

formance of the IDEI algorithms, operating with known bit timing and carrier

phase references, and for perfect identification of the required statistics

of the colored interfering processes. Second, it was required to determine

the sensitivity of the detection algorithms to accuracy of the identifica-

tion of the interference. Third, it was required to derive and validate

optimum identification algorithms. Finally, it was required to form an

initial estimate of receiver practicality.

The four requirements on the fourteen month investigation, described

above, have been fulfilled and the results are documented below. During

the course of the investigation a closed-form numerical expression was

derived for evaluating the best performance and the sensitivity of the

IDEI detector. Use of the closed-form for numerical computations was much

more efficient, time-wise, than was use of the Monte Carlo simulation.

Thus, more Yoluminous results were produced than might have been anticipated

on a simulation basis only.
J



This report contains five main sections, excluding the Introduction and

Conclusion. In Section 1I are presented all the mathematical analyses

pertaining to the probability of error, or error rate, of the IDEI detector.

These include the derivation of the closed-form error rate expression

under mis-identification, a spectral analysis of the IDEI detector with

perfect identification, the IDEI detection algorithms for DPSK, closed-

form error rate determination for standard detectors, and the derivation of

the Uniformly Most Powerful property of the IDEI detector.

In Section III are presented the mathematical derivations and results

for Maximum-Likelihood Identification of In-Phase/Quadrature Vector

Processes. These include derivation of a minimum canonical form for the

I-Q generator model, derivation of the M-L identification algorithms, and

validation results for the estimation performance of the MLI algorithms.

In Section IV are presented all the numerical results obtained in the

present investigation, either by Monte Carlo methods or by closed-form

numerical evaluation. These include a comparison of Monte Carlo versus

closed-form error-rate results for PSK and FSK, IDEI error-rate with per-.

fect identification, IDEI error-rate sensitivity to identification error,

and error-rate performance of the MLI algorithms.

Section V contains the receiver design and practicality evaluation.

Section VII contains the appendices.

The outcome of this second phase of the investigation may be summa-

rized as follows. It will be shown below that the IDEI detection algo-

rithms are reasonably robust (insensitive) to error in identification of

the colored interference process statistics, provided the errors are made

in a particular way. If the tracking filters are synthesized to match an

identified disturbance process which is of different bandwidth and/or

strength from the true process, then the algorithms' performance changes

smoothly, proportional to the bandwidth or strength errors. If, however,

the filter parameters are directly identified from the received signals

using an optimum stochastic (maximum-likelihood) technique, rather than

synthesized in a deterministic manner, the detector performance is highly

sensitive to identification error. Thus it appears that the practicality

of the IDEI algorithm hinges on the exact method by which identification

is implemented. Further work is suggested in this area.

2
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It is also shown below that the best performance (perfect identifica-

tion) of the IDEI detector is orders of magnitude better than that of

standard matched filter detectors in an environment of heavy additive col-

ored noise. The IDEI detector provides gain against narrow-band interfer-

ence equivalent to spectrum-spreading factors of the order of lO3 to 10
4.

It is also shown that the amount of gain is a function not only of the

interference to signal ratio, but also of the degree of similarity between

signal spectrum and interference spectrum.

Suggested steps toward reducing the present theoretical results to

practice are outlined in Section VI.
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SECTION II

ERROR RATE ANALYSES FOR INTEGRATED

DETECTION, ESTIMATION, AND IDENTIFICATION

I. CLOSED-FORM ERROR RATE UNDER MIS-IDENTIFICATION

The emphasis of the work being presently reported was on the perfor-

mance of the new disturbance-tracking IDEI coherent detection algorithms

for binary signals subject to additive colored plus white noise. The

colored noise represents a jamming signal while the white noise represents

receiver-generated interference. Thus, the analytical results presented

in this section are based on a simplification of the more general multi-

path and jamming model treated in [1]. It is assumed that the received

data is in In-phase/Quadrature (I-Q) form, resulting from a standard

coherent product demodulation of the band-pass radio-frequency signal.

A vector-Markov data generating model is hypothesized, as in Figure 1.

The data model has been obviously simplified, such as by deleting any vec-

tor-multiplicative noise as might result from impure phase references in

the I-Q demodulator. Such effects have been treated elsewhere [1, 2, 3]1.

The simple model will suffice for the present investigation.

In Figure 1, the I-Q data, z(k), is in sampled-data 2-vector form,

where k is samplc number. A(k;m) is a 2-vector waveform representing the

low-pass I-Q components of the transmitted signal. m is the transmitted

symbol, taken here as a member of the binary alphabet, {0, 11. Given the

value of m, the waveform of s(k;m) is known for all k = 1, 2, .... It

is assumed that the signals, z(k;m = 0) and A(k;m = 1), are A Priori

equally likely and have equal energy on the symbol period. Likewise, n(k)

is the I-Q 2-vector of additive white Gaussian noise. n(k) is taken as

zero-mean with known diagonal variance matrix, V nn

In Figure 1, the additive colored noise is generated as y(k). The

2-vector, y(k), is obtained from a 2N-vector, x(k), through the output 2

by 2N matrix, A. The transition matrix, 1, is 2N x 2N. The filter which

produces y(k) is excited by a white, zero-mean, unit-variance Gaussian

input 2-vector, w(k). The input matrix, P, is 2N x 2. By choosing the

constant filter structure, {r, :,, A, N1, properly, the filter will, in the

steady-state, generate a stationary, zero-mean y(k), having a prescribed

covariance matrix, V (j) for J = 0, 1, 2 ..... Using a suitable sampling

4
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model, the covariance matrix, V yy(j) may be related to the continuous-time

power spectrum of the additive colored interference. The equations govern-

ing the data generator are:

x(k + 1) = ox(k) + rw(k); x(O) prescribed

y(k) = Ax(k)

z(k) = 6(k;m) + y(k) + n(k); E{y(k)} = E{n(k)} = 0

m = 0, 1

V yy(j) = lim E{y(k + j) T(k)1; k = 1, 2,
k- j 0, l, 2,.

Vnn (k - j) = E{n(k)nT(j)} = Vnn •jk

6.k is Kroneker delta

V 021(1nn n 2x2

With the data modeled as discussed above, the IDEI detector takes the

form of Figure 2, which is a special case of the more general receiver for

multiplicative and additive noise, treated in [1]. This version of the

IDEI detector is the decision-directed approximation to the optimum detec-

tor under the Maximum A Posteriori Probability (or Maximum Likelihood, or

Minimum Probability of Error) criterion. The detector operates as follows.

From each incoming data sample in the upper branch is subtracted the

corresponding sample of the signal reference waveform for the symbol m = 0.

In the lower branch, the reference waveform for m = 1 is subtracted from

the data. Following the signal subtraction is a filter which attempts to

track the colored additive noise, y(k), in the presence of the white noise,

n(k). The filter is linear and is in the canonical form of a Kalman filter

with gain, G. Under the stationarity assumption the gain G is constant

and the steady-state Kalman filter is just a particular form of the Wiener

filter [4]. Note that the requirement for an exact signal reference

6 -C ,- . '



waveform implies identifying the level or strength of the desired signal

component in the received data. This implication was commented upon in

[1]. However, it turns out that the IDEI algorithms possess the Uniformly

Most Powerful [5] property with respect to the strength of the desired

signal component. This property is derived in a following section. The

effect of this property upon identification is detailed below.

The feedback tracking error waveform in each filter is designated

tT(k;m;n). The argument n denotes the assumed symbol (and filter). The

argument m denotes the symbol actually present in the data. eT( ) is a

2-vector. The tracking error waveforms from each filter are processed in

a quadratic form which essentially squares and averages the waveforms over

the K samples per signal symbol. The sum-squared tracking errors for each

filter are then compared at the end of each symbol period. The filter

displaying the least sum-squared tracking error is assumed to have been

using the "correct" signal reference and the symbol decision is made ac-

cordingly.

The tracking filters are operated with decision direction. At the

end of a symbol period, after decision has been made, the state vector of

the "wrong" filter is reset to the state of the "correct" filter. In the

case of a correct previous decision, both filters start the subsequent

symbol period "locked" to the colored additive interference, Y(k). In the

case of an incorrect decision, both filters are incorrectly initialized

for the following symbol period.

Monte Carlo simulations have been used to evaluate the performance of

the IDEI detection algorithms. These results are given below. The algo-

rithms were exercised with colored multiplicative noise or colored addi-

tive noise, individually, along with white additive noise. The simulated

error rates were compared with those of standard detectors for both binary

PSK and FSK modulations. It was found that for white noise only, the new

detection algorithms gave exactly the same errors, symbol for symbol, as

the standard algorithms. However, in the presence of colored additive or

multiplicative noise the IDEI algorithms always yielded better performance

than did the standard receiver.

Naturally, it is desirable to have closed-form expressions for the

error rate performance, to back up and extend the simulation results.

Such expressions are readily obtained, provided one more assumption is

7



made. The probability of error for a particular symbol is easily formu-

lated under the assumption that the tracking filters were correctly initi-

alized or, equivalently, that the previous decision was correct. This

assumption becomes increasingly good as the error rate becomes smaller,

provided the errors do not cluster. Error rate curves based on the assump-

tion will be lower bounds for the practical IDEI error rate performance.

A comparison with Monte Carlo results for clustered errors will show the

usefulness of the lower bound.

Under the assumption of a correct prior decision, the general detec-

tion statistic of [1] may be written as

K l T
S = T T(k;m;n = 0) V 1 eT(k;m;n = 0) - eT(k;m;n = 1)

k=l

VI eT(k;m;n = 1) (2)

where tT(k;m;n) is the filter's total transient tracking error waveform

and V11 is the assumed Innovations variance. From Figure 2 it may be seen

that the total transient tracking error may be partitioned into a response

due to the zero-mean Gaussian noises (colored and white) and a response

due to the desired signal and reference terms. Thus, define

eT(k;m;n) = E(k) + e (k;m;n) (3)

where c(k) is the (pseudo-Innovations) response due to zero-mean stochas-

tic input and e (k;m;n) is the filter's transient response to a driving

function

p(k) = 4(k;m) - a6(k;n) (4)

In (4) a is the identification estimate of the desired signal level,

which is unity for perfect identification. Because of the Uniformly Most

Powerful property of the IDEI algorithms, a may just be set to unity.

When identification is perfect, including the filter parameters, then E(k)

is identically y(k), the Innovations process, and L(k) is identically zero

8
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when m =n. Thus,

e.(k;m;n) 0 V k m m n

t,(k;m;n) 0 V k m m n

&(k) =v(k)

= , Perfect Identification (5)

Substituting (3) into (2) yields

K T I

k=l I, [.s ;m;n = 0) - t,(k;m;n = 1) +

.6s -km~ =)V 1 II .6(k~m~n = 0) - e ,(k~m~n = 1)

V,, t,5(k;m;n M(6

The process, (k), is zero-mean, Gaussian and, conditioned on m thee()

are deterministic. Thus S is conditionally Gaussian and is described by

the following means and variances.

K T1
E{Slm=01 = I [e (k;m=0;nOVtkmO =)+

k=l 6 n0V 1 e(km0n0 +

T 1

K T 1

In (7) th asupinhsbe mloe ht(qa nry the sum-squared

tracking errors are equal. The conditional variances are

9



var{Slm=O} : var{Slm=l} =

K KTT
4 K[e(j;m=O;n=O) - e(j;m=O;n=l)]Tv

j=l k=l

V (j-k)V I[e(k;m=O;n=O) - e,(k;m=O;n=l)] a 2  (8)

where V O(j-k) is the auto-covariance function of the process, (k), which

is in general colored.

It is shown in Appendix A that the auto-covariance function of the
pseudo-innovations, E(k) is given by

V (Z) = A[D*(I - G*A)] Y *[V-xxA - G*(AV AT + Vn)]

xx xx nn

+ [*(I - G*A)] l  A t V'6A; 0 < t

=AVxAT + Vnn; 0 = (9)xx n

where V* and G* are the values of the identified (or assumed) transition

matrix and Kalman gain respectively. ¢* and t are related by

0*= - (10)

The quantity Vqvx. is the actual predicted state estimation error variance
xx

matrix. The quantity V is the cross-variance between the state and

state prediction error. Both V% and V,- are obtained as solutions to

appropriate discrete-time Ricatti difference equations, which are derived

in Appendix A. The method of solution used is to propagate the equations

numerically until steady state is reached, according to a Cauchy test on

succeeding stages. The quantity, V nn is the variance matrix for the

white additive noise, n(k).

With V and a defined by (7) and (8), respectively, the error rate or

probability of error is given by

10



P(e) = 24 - erf(- -)] (11)

where "erf" denotes "error function". For the case where identiiication is

perfect, (7) and (8) simplify and (11) becomes

P(e) =  [I erf(---)] =
2r

1 r e(k~m=l;n=O) V,\e, (k.-m=l;n=O)]

(12)

where V is the true Innovations variance.
VV

2. SPECTRAL ANALYSIS OF THE IDEI DETECTOR WITH PERFECT IDENTIFICATION

It has been observed lately by Schwartz [6] ... "that the discrete-

time formulation may provide insight into constructive techniques for

realizing, or approximating, the rather general (and sometimes abstrpct)

results that have appeared for the continuous-time versions." ... of

receivers containing estimators. The observation certainly proved true

for the IDEI receiver wherein the disturbance tracking feature was a

direct result of the discrete-time sequential formulation of the detec-

tion statistic. However, the present formulation of the error rate prob-

ability on a discrete-time basis yields evell more insight into the detec-

tion problem.

For instance, equation (12) shows that the effective noise in the

detection problem is evidently the Innovations process, since its vari-

ance, V , plays the part of a2 in the error function argument. Thus

the error rate is controlled, not be the total power of the additive

colored interference, but rather by the power in the untracked portion

of the colored interference, plus the white noise power. Secondly, the

Innovations variance is minimized, and consequently the error rate is

minimized when the filter is "matched" to the colored interference wave-

form in the Wiener sense.

11



Equation (12) also shows that the effective signal power is propor-

tional to the sum of the squares of the deterministic tracking error wave-

form of the "matched" filter when driven by the difference of the two

possible versions of the transmitted signal. There are two obvious ways

to maximize this effective signal power and thus minimize the error rate.

One is to maximize the distance between the two signal vectors, S(k;m=O)

and s(k;m=l). The maximum distance is obtained when the two possible

transmitted signals are anti-correlated. Optimization may also be obtain-

ed by designing the signal waveform so as to maximize the tracking error

at each sampling instant. Note that the deterministic transient error

response of the "matched" filter will only approach zero identically when

the filter bandwidth (and, hence, the bandwidth of the colored interfer-

ence) is orders of magnitude greater than the transmitted signal bandwidth.

While the formulation of (12) lends itself to some qualitative obser-

vations about the behavior of the detector, it is desired to translate the

parameter, u/f2ci, into a different form. In his treatment of the optimum

continuous-time detection of known binary signals in colored noise,

Blachman [7] was able to relate detector performance to the spectra of

signals and noise. The present discrete-time problem may be examined

similarly by assuming arbitrarily fast sampling and transforming to con-

tinuous-time.

A continuous-time version of the sampled-data detector may be set up

by assuming that the symbol interval is the closed interval, [-T/2, T/2].

The. continuous decision statistic is then

S fT/2 IT(tm;n:O) eT(t;m;n=O) - (t;m;nl)
-T/2 t t-t

eT(t;m;n=l)]dt (13)

The mean and variance of the statistic are then

= j T/2e(t;m=l;n=O) e (t;m=l;n=O)dt
-T/2 1 (14)

T/2 T/2 eT

02 = 4f f -e (t;m=O;n=l)V (t-t')e.(t;m=O;n=l)dtdt'
-T/2 -T/2 1U

12
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Now define

~~(t)~ L ; [-.T/2, T/2]
=0, otherwise (5

and define

x~t)~(t) e~ (~m=0n=1)(16)

Then (14) may be written as

1= roxT (t)x(t)dt

a2 = 4 f**O foo. x T(t)V C&(t-t')x (t' )dtdt' (17)

By Parseval's Theorem, then,

r' xT~)x*~)d ~(18)

where XGJ) is the Fourier Transform of x(t), and O~denotes comnplex
conjugate.

Next observe that

fM V (t-t')x(t')dt' =V (t)*x(t) _ q(t) (19)

where ()*() denotes convolution. Thus

a2 = 4 f'. x T(t)_q(t)dt

= 4[L f-O XT(.[S (w)X(w)]*dw] (20)

where S tt(w) is the Fourier Transform of the auto-covariance matrix func-

tion of the pseudo-innovations.
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Now, X(w) is

X(w) = [T sinc(T)],(1E ) (21)

where E ( ) is the Fourier Transform of the transient error waveform,

e(t;m=l;n=O), and sinc( ) is the function

sinc(x) = sin(wx) (22)
1TX

Thus, the argument of the probability of error function, P(e), is

1 f' [T sincT-)*E (w)]T[T sinc (!-),E()]*dw

,72- 2 F I [ /1n w T ), TS* ((a)T si T ) I ()l*dw
OD27r .

(23)

Now, assume perfect identification and also that the bandpass spec-

trum of the additive colored interference is even-symmetric with respect

to the carrier frequency of the transmitted signal. Then, (t) is the

true innovations and is white. Thus, S& (w) is diagonal and constant,

with

S M 10 (24)
n0 1)

where n is the white noise spectral density for each I and Q component of

the white noise. Note that the bandpass white noise density is n/2 .

Then (23) becomes

~~ Li" L[Ts c (WT )T][T sinc( )E*w)d
,r - s 2 2

* % 6

(25)
Since the additive colored interfering process spectrum is even-symmetric

with respect to carrier frequency, the I and Q portions of the Wiener

filter are not cross-coupled. Then

14
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H SSAI(w)I He(w) SA,(w)

where He (w) is the Wiener filter transfer function from input to error

point, for either the I or the Q filter. S A(I) and SQ (w) are the Fourier

transform of the differences of the two possible I and Q signal components,

respectively.

Now He () is a whitening filter for the sum of additive colored inter-

ference plus white noise. The transfer function is such that

IHe(W)1 2 . [S(yy() + n] = n (27)

where S yy(w) is the spectral density of either the I or Q component of

the colored interference. To minimize the error rate, P(e), requires

maximazation of P , as given in (25). This requires maximizing the

integral of the convolution of T Tsinc(!) with the whitened SiM)and

S 4M)

To obtain more visibility into the problem, assume that the length

T of the detection interval is much greater than the reciprocal of the

highest frequency present in the whitened difference signal spectrum.

This would occur if the symbols were being detected in blocks (block-

coding). Then the convolution with T.sinc(!T) approximates convolution

with a delta function, which just reproduces E 1(w). Then (25) becomes

L__L - l :STM . d+((28
=1 2 8S.6I(W)2 yS) 6Q(W)

2 ]dw

1i - SI()1 8 S6QW dw (28)
15 n
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In terms of the band-pass parameters, (28) is

s Is6(W)12

- L 4 ) d_ (29), 2 -- 4 Syy(W) + n

The limiting case of (29) as n - 0 is the classical whitening filter

result, given by Blachman [7].

In the form of (29) it is clear why some signals should outperform

others for a fixed interfering spectrum. Suppose the spectrum, S yy(),

decreases as -Nfor increasing w and the spectrum IS (W)1 2 , decreases as
N d e

For M < N, as white noise level, n, goes to zero, the intergrand
M"

k N-M

approaches kw and the infinite integral becomes arbitrarily large.

This would be a singular detection problem. In practice, however, n willK
remain finite and the integrand will approach . For 1 < M, singular

detection will not occur.

As Blachman commented, it is clear that 'he spectrum IS (W)12 should

be made large where the spectrum S yy(w) is small and vice versa, in order

to minimize P(e). Failing this, the tails of the spectrum IS (W)I2 should

be made to decay at a rate less than that of S yy(), at least in the fre-

quency range over which the detector responds.

Example: PSK Versus FSK

(28) will be evaluated for PSK and FSK signalling waveforms. The In-

phase and Quadrature low-pass waveforms are

16l(t;m) = A coso(t;m) (30)

6 Q(t;m) = A sin¢(t;m)

where *(t;m) = A c(m) ; PSK

= Awt.c(m); FSK (31)

and c(m) = 1 : m = 0

= -l: m = l (32)

where AO and Aw are the modulation index and frequency deviation,

respectively. Then,
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6 (t;m) =A COS(ApC(mf)) = A COS(.Af) :PSK

16 (t;m) = A sin(A C(M)) = A c(in)sin(AO)

1 (t;m) = A COS(Awt-C(M)) = A cos(Awt) :FSK

4 (t;m) = A sin(Awit-C(M)) = A c(m)sin(Awt) (33)

and

6 A(t) A Q (t~m~O) - A Q(t~m1l)

2A sin ("c)1rt) :PSK (34)

.6 A I(t;m=O) - 1 (t;m=1)

A= 'Q(t;m=O) - A Q (t;m=1)

-2A sin(Awt)ir T(t) :FSK (35)

The Fourier Transforms are

S 1(W) =0 :PSK or FSK

sin(~ T
S W = 2 AVsin(A ) T:PSK

S 'Q (W -=fT/2 2A sin(Acwt) e-jwt dt :FSK (36)

Then, the numerator of the argument in (28) is

is(W)12 = (2AT sin(Af))2 -i 2(~ :PSK
'6Q(T)2

= fT/2  A sin(Awt)e jwt dtI2 :FSK
-T/ 2

17



The FSK result may be shown to be

IS (W)1 4A2  sin(w + ) - l
6Q =) + A 2 - Aw

sin(w - A)i] :FSK (38)

1

It can be shown that both the PSK and FSK spectra decay as -7 for

large w. Thus, any difference in performance (as observed in the following

section) is not due to the high frequency behavior of the spectra. Or

such is the conclusion to be drawn from the simplification of (28).

Therefore the performance difference must be explained by the detailed

behavior of (25) in the frequency region of the main bodies of the signal

spectra.

3. IDEI DETECTION OF DIFFERENTIAL PHASE SHIFT KEYING

Another type of signal modulation for which comparisons between IDEI

and standard detectors were desired is the Differential Phase-Shift-

Keyed (DPSK) signal. DPSK was first described as a technique used in the

Collins Kineplex system [8, 9, 10]. Kineplex actually embodied techniques

which later were analyzed and characterized as DPSK, Quadri-phase, and

L-Orthogonal Signalling [11].

DPSK was an ad hoc development to circumvent channel perturbations

of the phase reference required for coherent detection of PSK. It was

based on the premise of a slowly varying phase disturbance process with a

time constant (inverse bandwidth) much greater than one symbol period.

Under this assumption, the next previous symbol may be used as the phase

reference for detection of the present symbol. The channel which best

fits this model is the HF channel, for which Kineplex was designed. Many

channels do not fit the model, such as the aeronautical data-link channel,

subject to Earth-reflective multipath.

The DPSK signalling scheme is to reverse the signal phase between

previous and present symbol if the present symbol is a "I" and not to
reverse if the present symbol is a "0". Let m(j) denote the signalling

symbol (waveform) on the ith time period and n(j) denote the information

symbol (bit) on the jth time-period. Consider the truth table of Table 1.

18

........ _ _ I -



TABLE 1

TRUTH-TABLE

m(j-]) m(j) Reversal n(j) m(j-l) 4 m(j)

0 0 No 0 0

0 1 Yes 1 1

1 0 Yes 1 1

1 I No 0 0

Table I shows that the classic DPSK signalling scheme is identical to

differential encoding of the signalling symbols. That is, for DPSK it is

true that

n(j) = m(j) (+) m(j-l) (39)

Since (39) describes classic DPSK, it is obvious that DSK may be

detected either coherently or non-coherently. When detected non-coher-

ently, the detection algorithm must consider data over two signal symbol

intervals in order to make the decision as to whether or not a phase tran-

sition occurred. When detected coherently, each signalling symbol may be

detected individually and the information symbol decoded from (39). In

terms of sampled-data processing, it is obvious that coherent detection

of DPSK may be implemented recursively. Non-coherent detection may need to

store all the data samples from the preceding signalling interval and may

or may not be iplemented as a recursive process.

The question of whether to implement coherent or non-coherent detec-

tion for DPSK depends on the type of channel involved and the performance

of the detector in that channel. For a standard DPSK detector, a non-

coherent scheme should be used since DPSK was invented to overcome the

short-comings of the standard coherent PSK detector. For the IDEI detector

in its present stage of development, detection must be coherent. This is

because the present IDEI detection algorithms are coherent algorithms.

i9
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It was not a task of the present contract to derive IDEI algorithms on

a non-coherent basis.

It has been shown [12], and will be documented below, that the coher-

ent IDEI detector for PSK operates well under heavy aeronautical multi-

path conditions. It was previously shown in a NASA investigation of the

IDEI detector [3] that using a very unstable phase reference derived from

the multipath channel does not change the error rate from that caused by

the multiplicative noise effect on the data itself. This is because the

phase rotation process is itself a vector multiplicative noise and is

absorbed in the multipath multiplicative noise model. What this all means

is that the IDEI error rate for DPSK can be obtained using coherent symbol

by symbol detection and decoding according to (39).

It should be noted that a single isolated error in detecting one

signalling symbol, m(j), produces a pair of errors in the information

symbols, n(j) and n(j+l). If it is assumed that IDEI detection errors for

PSK occur independently and singly, then

PDPSK(e) = 2 PPSK(e) : IDEI detection (40)

The goodness of this assumption is tested below in the section on perfor-

mance results.

4. CLOSED-FORM ERROR RATES FOR STANDARD DETECTORS

a. Coherent Detection

In the course of the analyses of the error rate performance of

the IDEI detector, it was desired to make comparative analyses between it

and standard detectors, designed for white noise interference only. It

was desired to make these comparisons not only by Monte Carlo simulations,

but also by numerical solution of closed-form expressions for the standard

error rate.

For binary phase-shift-keying, PSK, there is only one standard

detection technique, which is a coherent one. This detection scheme is

characterized as a "Correlation Receiver," or "Matched Filter". It is

loosely referred to as an "Integrate and Dump" detector. For binary fre-

quency-shift-keying, FSK, there are two standard detectors, one coherent

and the other non-coherent. The coherent scheme is used when there is no

20
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difficulty in deriving a carrier phase reference. If carrier phase is

not assumed derivable, then the incoherent FSK detector is used.

For high signal to noise ratios (low error rates) the performance of

the coherent detector is about 2.5 dB better than that of the non-coherent

detector [11]. For purposes of comparing the IDEI performance to standard

detector performance for FSK, the best standard detector is chosen, which

is the coherent one.

From [11, the sufficient statistic for coherent detection is

K T
u I z (k) [A(k;O) - A(k;l)] (41)

k=l

where z(k) and §(k;m) are as defined in (1). The decision rule is

m=l
u (42)
m=O

The probability of error, P(e), for coherent detection is

P(e) = Prf[O < u, m=l]U [u < 0, m=O]}

p(ulm=l)du + 0 p((m=Oldu] (43)

0

assuming that the occurrences of m=l and m=O are equally likely. The

density, p(ulm), is Gaussian and is described by the K-sample conditional

means and variances of u.

Substituting the defining relation for z(k), of (1), into (41) yields

K T
k! [6(k;m) + X(k) + n(k)] [(k;O) - A(k;l)] (44)

Since y(k) and n(k) are zero-mean, then

KT

E{uim} = .6 (k;m)W&(k;O) - §(k;l)] (45)
ktl
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It is assumed that the "energy" of s&(k;l) and &~(k;O) are equal so that

K T K T
I z*(k;0)s(k;0) 1 6 (k;1),6 (k;1) (46)

k~l k=1

Then
Efvlm=O0} -Efulml} 6 (47)

The variance is given by

varfujml

S[zs(k;0) - (k;1)] TE{ry(k) + n(k)][y(j) + n(j)] TI
j=1 k=l

[A(j;0) 6(~j;l)l (48)

Thus, it is seen that

varfujm=01 = varfulm=U 4 a (49)

In (48), the expectation is the 2 x 2 autocovariance of the sum of

the I-Q vectors of white noise and colored noise. Since yj(k) and n(k) are

zero-mean and independent, (48) may be rewritten as

K KT
varfulm} = I [A(k;o) - s(k;l)] [V yy(k-j) + V nn (k-j)]

j=l k=l

[Uj; 0) - AO ;l1)]1 (50)

where V nn(k-j) is the 2 x 2 white-noise variance given in (1). Assuming

that y(k) is the low-pass I-Q vector resulting from a stationary band-pass

process, then V (y ) has the form

r ) [Vii( ) V.q(

If the continuous-time bandpass process has a power spectrum whichi is

even-symm~etric about the signal carrier frequency (demodulation reference

22



frequency) then V. ( ) 0, identically. See Section IV for details.

From the above, then, the probability of error for coherent detection

is given as

P(e) = 1{l - erf( (52)

where erf( ) is the tabulated "error function". It is desirable to write

P(e) in terms of the ratio E/N where E is the energy of the continuous

time signal waveform in one symbol period and N is the spectral density0

of the continuous-time white noise, n(t). The continuous-time version of

(52) is

P(e) = [l - erf[/E21N 1] (53)
2 2N 0  ](3

where p is the correlation coefficient between the two possible signal

waveforms. For PSK, p = -1. For FSK, p = 0.043 for AO = 0.785. Thus,

p 0 0. These results may be obtained from the defining integrals, p =

E- 1TT(t-m=l) (t;m=O)dt, where E = f _l(t;m=l)A(t;m=l)dt and the 6(t;m)

are given in equation (33).

In order to tabulate results for P(e) as a function of E/N , the iden-

tity is made

E(l- ) - P (54)
2N0  V2"o

This leads to setting the level, a , of the white noise variance, Vnn'

according to

2 = S-L(ho),K (55)

n  E/N(

where S is total carrier power, K is number of samples per symbol, and

L(AO) is a modulation loss factor of the modulation index, A .

L(AO) = sin 2 (Ao) :PSK

K 2 i2(21 1k-K1 sin (k- Z)A¢) :FSK (56)
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Note that by using (55), E/N becomes the ratio for the actual signalling

energy which, for low index modulation, does not include the energy left

in the residual unmodulated carrier. Comparison of performance between

differing modulation types (PSK or FSK) is done on the basis of equal
2

symbol E/N. Thus, the white noise variances, 0n, may not be equal, if the

modulation loss factors differ.

Letting J denote the power of the colored process y(k) (in band-pass

form) and B3 the one-sided equivalent noise bandwidth of the low-pass I-Q

process, y(k), an equivalent white spectral density, Nj, for the colored

process is defined by

J = Nj • 2 Bj (57)

Then the total equivalent white noise spectral density for the standard

detector is

NT =N + N (58)

where N is the usual white noise density.0

The total signal power S is related to symbol energy, E, and symbol

period T by

E = S.T-L(A4) (59)

where L(A) is modulation loss factor, defined in (56).

Thus

E (60)

and

S E (61)
J -(AO).T.NJ.2 Bj

Now, B

()No= E = L(AO) • (2 -R)N (62)

0
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where R is symbol rate. Thus

(E/N0 ) R
L(AO) ( ) (-) N (63)

and

NT  N0 N

l E/N0) (64)
_. L(N) (()

Thus

E F F : L(A¢).(S).(2 --) (65)N T I + F)

Knowing all the quantities in F, (65) may be substituted for E/N° in (53)

to compute the standard coherent detector error rate when the colored noise

process is of much greater bandwidth than the desired signal.

b. Non-coherent Detection

In order to have a fair comparison between the IDEI and standard

detectors for DPSK, it is desirable to use a non-coherent version of the

standard detector. Thus, it must be determined whether a closed-form

error rate expression can be obtained for the sampled-data, non-coherent,

DPSK standard detector.

The model for the received data, z(k), is somewhat different that

that of (1). Here, the data is described by

z(k) = Ho(k;m) + y(k) + n(k) (67)

where y(k) and n(k) are the noise terms of (1). The term H is a two-by-

two rotation matrix given by

Ho coso sinoo(8

H0 = -sin.o 0cosj (8
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where 0 is taken to be a uniformly distributed random phase angle due

either to the channel or to a completely unknown detection phase reference.

The modeling of o as a uniformly distributed random constant results

from the physical assumption that the phase perturbation on the received

I-Q signal components is very slowly time-varying with respect to the

symbol period.

For DPSK, the signal vector is given specifically by

= cos[c(k;m)Ao] cos(AO) (9=5 (k il (69)

sin~c~.A AOIc(k;m)-sin(A ) I

_- L .i

where AO is carrier phase deviation in radians and c(k;m) is the value of

the square modulating waveform, given as

c(k;m) = -1 : m = 0

= +1 : m = 1 (70)

Letting j denote the present symbol number (or period) and j-1 denote

the previous symbol number, it is seen that

[Ho0 1 (k;m)]
T [H0 6j(k;m)] =

= cos2 (AO) + Cj-1 (k;m)cj(k;m)sin 2 (Ao) (71)

For the case of no residual carrier where AO = n/2, it can be seen that

the expression of (71) has the value +1 when there is no phase transition

between symbols and the value -1 when there is a phase transition. Thus,

it can be seen that DPSK can be detected non-coherently on a sampled-data

basis by forming the sufficient statistic

1 T (72),Z- (k)zJ(k) 
(2

k=l

where z M(k) are the data-samples (2-vectors) from the previous symbol

interval and z(k) are the data-samples from the present symbol interval.

The decision rule is
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n(j)=O
U T (73)

n(j)=l

where T is the decision threshold given by

T = cOS 2 (A¢) (74)

Unfortunately, the statistic u is not Gaussian, due to the cross

products between the noises Y(k) and n(k) on the previous and present

periods. The probability of detection error for the non-coherent DPSK

problem has only been solved exactly for the continuous-time formulation

with uncorrelated (white) noise [8, 10]. The exact closed-form solution

for colored noise, as y(k) generally is, on a sampled-data basis is not

to be dealt with, further, here. Thus, the obvious precision approach is

to simulate non-coherent detection algorithms and obtain the exact error

rate performance of the standard detector empirically.

Also unfortunately, the non-coherent detector defined by the algo-

rithms (72) and (73) is not recursive. It requires storage of received

data points for an entire symbol period. A recursive algorithm may be

implemented which requires storing only one statistic from period to

period. This is the angle-estimating algorithm, based on [13]. From

(67) - (69), it follows that in the absence of noise

L [Zq(k)j = [sin[AO.c(k;m) - 3] ()

where use has been made of the fact that

sin[A¢.c(k;m)] = c(k;m)sin(Ao)

cos[A¢.c(k;m)] = cos(AO) (76)

Thus, without noise

z (k)
i- : tan[¢.c(k;m) - o] (77)
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Now define the discrete-time version of an "integrate-and-dump"
matched filter as

1K

M /%K)~! (k) (78)q K kll q

Define a statistic for the jth symbol interval as

S(Mj = arc tai(79)

where denotes that M() and M q are computed during the jth
interval. In the noiseless case

S(j) = AO.C .(k;m) - o0 No noise (80)

Assuming 0 is constant over two symbol periods

S(.) SOj-l) = AO[C.i(k;m) - c.j- (k;m)]
2AO~~~ : .km ,cj-1 (~)=-

-2AO c i(k;m) - 1, cj-1 (k;m) -I

=0 c i(k;m) -cj_ 1 (k;m) = ±1 (81)

Thus, denote a test statistic over two periods as

S =ISO) -. S(j-lfl - (82)

The decision rule is

n(j)=l (3
n(j)=0
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5. THE UNIFORMLY MOST POWERFUL PROPERTY

In this section it will be shown that for a broad set of conditions

it is not necessary to identify the strength, or scale, of the received

signal, 6(k;m). From (1), the received data is

z(k) = L(k;m) + y(k) + n(k) (84)

where 6(k;m) is desired signal, y(k) is colored noise, and n(k) is white

noise. Now, the scale, or amplitude, of s(k;m) is not known, A Priori.

Only the possible waveforms of 6(k;m) for m = 0, 1, are known exactly.

Thus, the reference signals for the optimum receiver of Figure 2 should

generally be a6(k;O) and a6(k;l) where a is the estimate of received signal

strength. It is shown below under what conditions the probability of

error is independent of a.

From (11) the probability of error for the IDEI detector is given by

P(e) I{I - erf( )] (85)

From Lemmas 2 and 3 of Appendix B it may be shown that the mean, u,

and variance, a2, given in (7) and (8) and used in (85), may be written as

K T
b I [eT(k;m=O, n=l)e (k;m=O, n=l)

k=l-

- e (k;m=O, n=O)e (k;m=O, n=O)]

K K
C2 4(b2 + (b')2) j 1 u (j-k)re (j;m=O, n=O)

- e (j;m=O, n=l)] Te (k;m=O, n=O) - e (k;m=O, n=l)]

(86)

In (86) b and b' are the diagonal term and super diagonal term, respective-

ly, of the 2 x 2 inverse variance matrix of the identified Innovations

process (V-_. in (8)). u (j-k) is the diagonal term of the 2 x 2 pseudo-proces

innovations autocovariance matrix. u &(j-k) is a scalar function.

The quantities, e (k;m=i, n=j) are the transient error response

(error residuals) of the Kalman (Wiener) filter to a driving signal
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S. .(k) = 6,(k;mzi) - a.6(k;n=j) i, i r {0' 1) (87)

Now denote

t',(k;m=i, n=j) t e. (k) '(88)

The steady-state Kalman filter, which is just a particular canonical form

of the Wiener filter is described by

x. j(k+llk) = -[ G*AI. (kjk-l) + o*(* S. .(k)

tij(k) =S ii(k) - Ax..j(klk-1) (89)

x.i j(0 0) =0 V i, j :zero initial conditions

where 0* and G* are the transition and gain matrices, respectively, for

the identified Wiener filter.

The solution to (86) is obtained as

ik-l k I
.i(klk-l) I [0) - G*A)J - o*G*S .(e)

k-i --
e. .(k) = S. .j(k) - I A[,4*(I - G*A)]l O*G*S.i .(t) (90)

13 13 t=l-1

It is shown in Appendix B that the quantity A[4D*(I - G*A)] -- DG

has the canonical form

A[P*l GA] -11 D** f(k, 1) fl(ks ) (91)

1-f (k, t) f(k, e

To evaluate (86) requires the signals, Soo(k) and So1(k). For binary

PSK or FSK (coherent), the signal vectors are
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F6(k)
s(k;m=O)

A( k;m-l) - ~ ~ (92)

where
()= A cos(A0) :PSK

= A cos(Awt k) :FSK

s Q(k) = A sin(AO) :PSK

= A sin(Awt k) :FSK (93)

The quantities A and Aw are PSK phase deviation and FSK (radian) frequency

deviation respectively. The quantity, t ks is sampled time value, given by

k K

where k is sample number, K is number of samples per symbol, and T is sym-

bol duration.

Then,

Sl()= ,z(k;m=O) - s(k;n=l)

= (1-a).6

It folwsta
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k-l
.-1l(k) - I [f(k, t)s.(1) + f'(k, t)Q(1)]

eoo(k) ( 1a)i l

LSQ(k) - [f(k, 1)sQ(t) - f'(k, t)si(1)] j

k-i
(1-a)6I(k) - I [(l-a)f(k, t).6Il) + (l+a)f'(k, t), Q )1t=l

t01( k ) :k-l (l+a)dQ(k) - [(l+a)f(k, ). Q() - (l-a)f'(k, t)slIR)]

Zll

(96)

Next, the results of (96) are substituted into the expressions for U

and Y2, given in (86). These expressions are rewritten as

K T T:b I lgeOl(k.eol(k): - etoo(k)eoo(k)]

k= 1

K K
G2 4(b2 + (b')2) I Xu (j-k)[e(J - l(j)] T

j=l k=l

[t00(k) - o1 (k)] (97)

Substituting (96) into (97) yields for the p-term,

K k-l
b I {4a[Q(k) - I f(k, t)SQ(t)] 2 +

k=l =l

k-l
+ [ I f'(k, e)4ift)][4(l-a)6Q(k) + (3a2 - 4a + 1)

k-l k-l
* f(k, t)zQ(t)] - [ X f'(k, Z)zQ(t)][2a(l-a)si(k) +

t-l Q lI
k-l k-l

+ (3a2 - 2a - 1) 1lf(k, 1)i() - 4 a2 I f'(k, /)Q(M)I)
=l e=lQ

(98)
The result for a2 is
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K K j-l

02= 4(b2 + (b')2){4a 2  ) u[(j-k)[( I f'(J, 0sQ0))

j=l k=l -=l

k-l j-l
* ( y f'(k, £)bQ(k)) + (sQ(j) - f(J, )QM)

4 =l l

k-l
(AQ(k) - X f(k, Z)6Q(e))} (99)

Q =l

It may be seen from (98) and (99) that in the argument - , the a

factors will cancel only if f'(k, e) = 0, identically. This latter will
occur only if the Wiener filter is structured in the form where the I and
Q states are uncoupled. Note that the restriction is not that the I and Q

terms of the colored noise process, y(k), be uncoupled (spectrum symmetric

w.r.t. signal carrier frequency), but only that the filter be structured

for uncoupled I and Q processes. In case the y(k) process represented a
one-sided interference spectrum, the uncoupled Wiener filter would not be

optimum and some penalty would be exacted for the additional white noise
admitted to the filter. However, in order to retain the Uniformly Most
Powerful property, the possible SNR penalty must be accepted.

If it is assumed that the Wiener filter is always structured for un-

coupled I-0 processes, then b' = 0 and the dependence of the argument P

on b also disappears. Thus, the final argument becomes ro

K k-I
S(k)_ Zf(k'  fk

P _ kzl QQ

'-a~ii k-i

2 K K j-1 -
/2 1 1 u (j-k)[zQ(j) - I f(j, Z).Q6 )][SQ(k) - I f(k, t)SQ(W)]

j~l k~l FE Q Zl Ql tl Q

Thus, under the conditions stated, P(e) is independent of a. It should

also be noted in passing that the argument - also has no dependence on

the in-phase signal component, zi(k). This is reassuring since 4l(k) con-

tains no information concerning the message symbol. It should be recalled
thtteonly reason for allowing si1(k) f 0 was to maintain an unmodulated
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residual carrier component for anti-multipath (multiplicative noise)

detection.

Retention of the UMP property is most desirable, since it alleviates

what would otherwise be a most difficult requirement to satisfy, identifica-

tion of the desired signal strength in the presence of possibly stronger

interference. Use of the UMP property may, however, conflict with identi-

fication of the colored interfering process, depending on how such identi-

fication is implemented. ML identification, which is described in the

following chapter, is achieved by processing the pseudo-innovations, or

tracking error. With an improperly scaled signal waveform reference,

as(k;n), the tracking error is perturbed and may cause error in the ML

identification. However, if the ad hoc identification method, alluded to

in Chapter IV, is employed, then UMP-induced identification error may not

be as significant, since detection error rate is later shown to be quite

tolerant of ad hoc identification error. An exact characterization of the

identification error induced effects of using the UMP property requires

further research than has been performed to date.

The UMP property was shown to obtain for a class of signal structures

of the form of (92). PSK and FSK happen to belong to this class, as do

PAM signals, also. The requirement to implement the tracking filter in

uncoupled form is not critical since the only effect is to allow some ad-

ditional white noise into the filter. The worst effect would be a 3 db

degradation for a truly single-sideband interfering signal.
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SECTION III

MAXIM!UM LIKELIHOOD IDENTIFICATION

OF IN-PHASE/QUADRATURE VECTOR PROCESSES

1. THE I-Q CANONICAL MODEL

To examine the statistical relations for the In-phase and Quadrature

low-pass processes, consider the bandpass formulation, thereof. Define

a bandpass Gaussian process, y(t), as

y(t) = Yi(t)coswct - yq (t)sin ct (101)

which has power spectral density, S yy(W). The power spectral density is the

Fourier transform of an autocorrelation function, V yy(), and is therefore

real, positive, and an even function of w. However, note that the density

need not be locally symmetric with respect to the frequency, wc"

Now, yi(t) and yq (t) are the low-pass Gaussian In-phase and Quadrature

components of y(t), respectively. Assuming that y(t) is zero-mean, then

yi(t) and yq (t) are zero-mean and completely described by their autocorre-

lation and cross-correlation functions, V ii(T), V qq(T), and V qi(T). For
y(t) to be stationary it is necessary and sufficient for [14]

Vii W = Vii(-T) = Vqq(T) = Vqq(-T)

V qi(T) = V iq(-T) = -V qi(-T) (102)

That is, V ii(T) and V qq(T) are even functions and V qi(T) is an odd function.

Note that it is not required for yi(t) and yq (t) to be orthogonal (or

independent).

The power spectral densities for yi(t) and yq (t) are defined by the

Fourier transforms

S ii( ) = F{V ii( )}

Sqq(w) = F{Vqq(T)l

S qi(w) = F{V qi()} (103)
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Since Vii(T) and V qq(T) are real and even, S(ii ) and Sqq(w) are real, even,
and positive. Since V qi(T) is real and odd, S qi(W) is imaginary and odd.

Now, S ii(), Sqq (w), and S qi(w) may be determined directly from S yy()

by [15]

Sii(W) = S yy(Wc +) U (W c +W) + S yy (- c) U (W C-W)

Sqi(u) = j[Syy(W-Wc ) U (c- ) - Syy(Wc+W) U ( c+)]

(104)
where U( ) is the Unit-Step function defined by

U(x)=l ; 0 < x
= 0 ; x < 0 (105)

Figure 3 shows the various spectial relations from (104) for a hypotheti-

cal non-symmetric bandpass power spectral density. Note that if S yy()
were locally even symmetric with respect to the frequency, wc' then S qi()

would be identically zero. Hence, Vqi (T) would be identically zero (limit-

ing case of an odd function). Thus, yi(t) and y q(t) would be orthogonal,

uncorrelated, and independent (since they are Gaussian).

If Yi(t) and yq (t) were independent, they could be identified indepen-
dently, using Single-Input-Single-Output (SISO) identification techniques.

Unfortunatley, in general, the Doppler spectra or additive colored inter-

ference spectra are not locally even symmetric. Thus, in general, yi(t)
and y q(t) are correlated, and Multi-Input-Multi-Output (MIMO) identifica-

tion must be used.

For the present problem, the I-Q Generator Model is the stationary

version of a linear discrete-time invariant system. System parameters are

assumed to be constant or so slowly time-varying that they may be taken as

constant for the purposes of recursive identification. This means that
the elements are constant over the interval of time corresponding to the

memory of the identifying algorithms.

Thus, the I-Q model is defined by the equations

x(k+1) = 0 x(k) + rw(k)

(continued)
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Figure 3. Spectral Relations
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y(k) = Ax(k)

z(k) = y(k) + n(k) (106)

Now, y(k), n(k), z(k), and w(k) are all 2-vectors. In terms of the I-Q

formulation, they are defined by

y(k) = yi(k). n(k) = ni(k)
I 

w 
y 

Lnq(k)J

z(k) = Fz(k) (k) = w.(k)

Lzq(k)J LWq(k)j (107)

Both n(k) and w(k) are independent, zero-mean, white and Gaussian.

It is assumed that Yi(k) and y q(k) are each Markov-N. Thus, the state-

vector, x(k), must have 2N state (system order), and the obvious defini-

tions follow:

r(k)
x(k) I ]

L.Ji T qq

[-ii ,Yiq A -i -iq

where the xi(k), x (k), Yii' Yiq' -qi -qq _ii, iq' Aqi' and q are all

-i V.V) 1Wy.i ' ,'-q''i 'q 'i q

N-vectors. The %ii Diq' qi' and oqq are each NxN matrices.

The major emphasis of the modelling is to find the system parameters

for the colored radio frequency intf.rferences and/or the complex Doppler-

spreading process so that the system produces a qiven output covariance

function. This system must satisfy three system properties.

(1) The stationarity of the I-Q process.

(2) Markov-Gauss process.

(3) Output statistics
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The output covariance relations for the general models are

V zz(k+j, k) = Efz(k+j)z(k)}

= AVxx (k+j, k)A + Vnn (109)

where

V 0 21 6
nn n W jk

From the Markov process, the covariance of the state, V xx(k+j, k) is given

by

V xx(k+l, k+l) = Vxx (k, k)DT + rr
T

Vxx(k+j, k) - Jxxv(k, k) (110)

It may be assumed without loss of generality that w(k) has unit variance.

It is assumed that the generator has reached steady-state ard that x(k)

is stationary. Under these conditions, equations (108) and (109) become

V z(k+j, k) = MAVxx AT + Vnn

Vxx = 0xx T + rrT  (ill

Now, the requirements of equation (102) are that for yi(k) and y q(k) to be

low-pass I-Q components, it must be satisfied that

Vzz(k+j, k) 4 Vzz(j) = FVii(J) Viq(J)

Vqi(J) Vqq(j)

V ii(J) = Vqq (j) ; an even function

V. (J) = -Vi (-j) = -V .(j) ; an odd function (112)
iq iq q

The canonical modelling problem is to choose a structure {r, o, A)

for the data generator such that the number of non-zero elements is minimal.

So far as realization of a specified output autocovariance matrix is con-

cerned, r and A are redundant. That is, one or the other of r and A may be

fixed and the remaining matrix varied to realize the autocovariance. In

the present model, A is fixed and is therefore known, A Priori. By Theorems
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1, 2, and 3 of [16], the generator structure is given by

L 0 (113)

Loz _

where y, y', and x are all N-vectors and 0 and 0' are each NxN symmetric

matrices.

This system structure was derived by continuous-time modelling since

time is a parameter in (101). This system structure of (113) satisfies

the continuous-time model for the stationary I-Q process. The relation

between the continuous-time model and the discrete-time can be found in

[16].

The system equations are given as follows.

x(kil) = , x(k) + , w(k)

z(k) : T' x(k) + n(k)
0  T

where

E{w(i)w(j)} I ij

E{n(i)n(j)} aij6
n ii

Ef{_(i)_u(j)} = 0 for all i, j

and 0 and p' matrices are assumed to be

= jj2, = 21
0 N 0 ON

T : (l, , .. l)(115)
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Figure 4 shows the partially decoupled system where Z denotes the

jutaposition matrix.

The steady-state Kalman gain, G, and the innovation variance corre-

sponding to this system have the following structures, as shown in Appendix

B.

G =  ,, ;;! V =, _U
G -, J ' . (116)

where 9 and a' are each N-vectors. When the output spectrum is symmetric,

then the off-diagonal blocks of (112) and (115) are zeros.

2. DERIVATION OF THE MAXIMUM LIKELIHOOD ALGORITHM

Maximum Likelihood Estimation was introduced into statistics by R. A.

Fisher in 1906. It is probably the most widely used method for estimation

in statistics. The vector of unknown parameters {o, r, V ) of the system
nn

is denoted by 0. The maximum likelihood estimate of 6, given a sequence

of observations, z(l), z(2), ..., z(K) is given by

= max p(Z(K)ja) (117)

where Z(K) = {z(l), z(2), ... , z(K)}

and

p(Z(K) I) = conditional probability density function of Z(K)
given B.

(118)

The method of maximum likelihood consists of finding that value _ of para-

meters which is "most likely" to have produced the data.

An expression for p(Z(K)IJ) is derived as

p(Z(K)Ig) = p(z(l), z(2), ... , z(K)Ip)

= p(z(K)jZ(K-l), 1)p(Z(K-l ) )
= p(z(K)IZ(K-I), )p(z(K-I)1Z(K-2), §)p(Z(K-2)IB)

K
= T p(z(k)JZ(k-l), .) (119)

k=l
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Figur 4. Pat a meopled SystemK

p(z(kflZ(k-1), B) is Gaussian since w(k) and n(k) are Gaussian and the

generator is linear. Therefore, the density function, p(z(k)IZ(k-l),B)

is completely characterized by the conditional mean and variance.

Efz(k)IZ(k-l), 0} = z(kfk-l, 6)

Ef[z(k) - z(kjk-l, a)][z(k) - z(klk-l, a)] TJZ(K-l), ~

=Eiv(k, )v T(k, )IZ(K-l), a} = V (k, 6) (120)

where v(k, ~)=z(k) - z(kik-l), ). v(k, e) is the Innovation process
and V _(k, ~)denotes its variance.

VV

The negative log-cost function, J($), can now be written as

J(B) = -log p(Z(K)J )

fJl (k_ - , P,)v(k, ~)+ logIV1 (kel

(121)
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The problem of determining the ML estimate has now become one of find-

ing a way of calculating the conditional mean, z(klk-l, 0), and the error

variance, VVV(k, a). The quantities can be obtained from a Kalman filter

state estimate given a. Note that the ML estimation process is identical

to the MAP detection strategy so that this ML estimation is imbedded in the

detection algorithm. The Kalman filter algorithm is the following

X(klk-l) = 0X(kjk-l) (122)

v(k, B) = z(k) - AX(kik-1) (123)

X(klk) = i(klk-l) + G(k)v(k, -6) (124)

and

V (klk-l) = oVy(k-Ik-l)T + rrT (125)

V (k, B) = AVy(kjk-l)AT + Vnn (126)

G(k) = Vv^(kjk-l)AT V_1 (k, )(127)xx VV

Vv(klk) = (I - G(k)A)V\(kIk-1) (128)

In the steady state, equations (125) - (128) are also in steady state and

a real-time computation is not necessary. Therefore, the ML estimation

is to find v(k, ) which minimizes the cost function, J(B), with respect

to B since the logarithm is a monotonic function. This is a very difficult

non-linear problem because of the constraints in the Kalman filter equations.

In the steady-state, the filter gain, G(k, B) and covariance, V V(k, B)

have reached constant values G and V . The vector I of unknown parameters

is now defined to include G and VV instead of Vnn and r since the latter

are subsumed in the former. Then

1k T 1
J(B x (V (k, B)V_ v(k, B) + logIV 1} (129)

where 
k1l

a = unknown parameters in ({, GI

Once B is estimated, then r and V nn may be obtained from (125) - (128) if

desired. When the numbers of unknown parameters in B and in Vnn and rrT

are identical, it may be possible to use A to solve for unique estimates

of the unknowns in Vnn and rrT. Otherwise it is not.
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The cost function can be minimized with respect to V to give
Vv

V v(k, a)v (k, (130)
k=l

where a is the ML estimate of unknowns of o, G. Substituting this value

in cost function (129) we have

K
J(B) = log IV VI + constant (131)

This function can be minimized using the gradient methods, referred to as

the Newton-Raphson method. The separation between estimating f and V

is not as complete as in the SIS0 [17].

The cost function has multiple maxima, saddle point, discontinuities,

and singular Hessian in parameter space, in particular, a large number of

unknown parameters. The application of the gradient method for this diffi-

cult non-linear programming problem causes extremely slow convergence,

divergence, or convergence to a wrong stationary point. Thus, good

initialization is important to ensure convergence to the absolute maximum.

This is analagous to the "acquisition" problem for any non-linear tracking

estimator.

The basic iteration in gradient-type non-linear programming methods

is

ii+l = -i - i = i - PiRi i (132)

where Ag is the step size and ai is the unknown parameter vector at the

ith iteration 2i is a vector of qradients of the cost function J(6), i.e.,

9- (133)

R. is an approximation to the inverse of Hessian matrix:

R 32 = ji (134)
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and pi is a scalar step size parameter chosen to ensure that J( i+l) <

J(8.). The main differences between many non-linear programming schemes

is in selection of Ri, and in some cases pi and 9i [18].

The first gradient of the cost function, J(p) is

a _(A) K T(k, B)

J( v (k, P)V-  - (135)
'a k=l V aV

Generally, the computation of the Hessian matrix is not desirable since

it is very expensive to compute the extra terms and may not pay off in terms

of the improved convergence rate. Instead one chooses Ri as the inverse

of the Fisher information matrix M. where1
Mi = E {2J( _ E {[J(l] [ BJ( )lT= - F -L

-2 1 =80'<
M:B E E

1
(136)

The expectation is taken over the whole sample space. Mi is a nonnegative

definite symmetric matrix. This technique is called by modified Newton-

Raphson, quaslinearization. Mi is oenerally estimated from the samples as

K Fav(k, a- T  V(k, 8)

Mi(n, m) = I I -  _ V_ v-l - (137)k=l I en_ v (m)

where 6(n) is the nth component of the 8 vector. A more exact expression

for ai and Mi can be found in [18, 19] but in general the extra calculations

are not worth the improvement in convergence rate. Note that the first

derivative J(G) with respect to 8 is needed to compute the approximate

inverse of the Hessian matrix. But the Fisher information method has a

difficulty when Mi is singular. To avoid this difficulty, the step size

a i is decomposed by
m Pi T

A-i I' (U.j)u. (138)
j=l X j 7
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where A. is an eigenvalue of M. corresponding to the eigenvector uj. It
can be seen that the step size in direction u. may be very large for small

A.. This means that, when M. is nearly singular, the step size takes large3 1

steps in those parameter directions about which the least information is

available.

The rank deficient method is to use a psedo-inverse of M for R as

m-k I TR = k 1 uu (139)

j=l j

where . are the eigenvalues of M and u. are the corresponding eigenvectors

such that A1 >A 2 >... >m-k > b > xm-k+l >'".>Xm and b is a suitably chosen

threshold value.

Numerically, better accuracy is obtained by modifying (132) as

rn-k T

Th U. (140)
-il i j=l j -

It is difficult to find a proper value for p and eigenvalue threshold b.

Mehra [19] has suggested a modified rank deficient method but there are

no general rules to determine a proper b value, in particular, for a large

number of unknown parameters. Experimentally, when the initial values are

far from true values, b may be large enough to prevent the estimator from

diverging.

Now, useful computational steps for the gradient are obtained through

the "state sensitivity" for parameter B.

Consider the following steady-state Kalman filter equations:

X(klk-l) = IX(k-llk-l) (141)

v(k) = z(k) - AX(klk-l) (142)

X(klk) = X(klk-l) + Gv(k) (143)

The gradient of v(k) with respect to (j = 1, 2, ... , N) can be obtained

sequentially from (141) - (143) as

4-
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aXDkk-1 aX k kd + X(k-1jk-l) (144)

Ivk = -A Xkk-)(145)
ad. 3

(I - GA) Xkk-)(146)
~ 4

4j

where is an unknown parameter of 4, matrix. So is the gradient of \)(k)
with respect to g~ j 1, 2, ... , N) given by

aX(klk-1) aX(klk-1) (147)

av(k) =-_A ai(kik-i) (148)

aX(klk) = (I - GA) aX(klk-1) + -~v(k) (149)

where gj is an unknown parameter of G matrix. Equations (147) - (149)
should be processed simultaneously and sequentially to solve the gradient
of v(k) with respect to . Note that the number of unknown parameters are
2N which is a minimum.

For stationary I-Q process, the gradient of J(E) with respect to a
is simplified as

3 =-B K T k -1 l v(k)

aa k=l VV

K av (k) av2 (k)
I [vl(k)u -v(kQu'] - + [vl(k)u' + v (k)u] -

k=l 2
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where 7 1 k] ~ 1~ u a-

v(k) =L ki and I _

The Fisher information matrix is

K '_-_v~k)T -~d
M(n, M) X =~ I~(~ V-1'

K ravl(k) U @v(k) U.] 3Dj(k)

+ r9vl~k) u. av2 k) u1 v k (151)

When the system is decoupled, then (150) and (151) may be reduced as

Uv 1 (k) av()
+ v2(k

and K r-avl(k) avl(k) av(k) av (k) (52

M(n, m) = L 1, (m + av(n 2

or
aJ() _ K V1(k)

Di") = U IV (k)
36 k= 1 3_

and K avl(k) avl(k)
M(n, m) =u X ) (153)

k=l an apm

We may have some insight about the decoupled system and verify the innova-

tion variance structure. Fortunately, in the estimate of u it is not nec-

essary to compute (140) in the case of the decoupled system or (2x2) system

since it is cancelled in (140). Otherwise, the innovations variance should

be estimated first with a good initialization value and used in (140).
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The computational steps for the MlL estimation are as follows:

(1) Assume inition conditions, , 0 o, and i(010)

(2) Compute v(k) = z(k) - AX(kjk-l) for k = Nfl, ... , N+M

(3) Compute cost function associated with a priori parameter estimate

1 K T 1
(i) 2 - v (k)V- v(k) + log IV 1

kil VV- VV
1

(4) Evaluate the sensitivity function sequentially and simultaneously

after M measurement and store these

av(k) ;i(k k-1)
-A-

where

1Xk~-) =F XXklk2 (k i(1 k-l + z z(k-1) (154)

F =D[ - GA]

D 4

(5) Compute the gradient of J( )

NJ(B) =kN+M 1 av(k) (155)
al k=~l V9

(6) Compute the information matrix

-N+M ___ 7vklT

DO~k VV (156)
k kN+l ~ VL

(7) Compute eiqenvalues X. and eigenvector u. of M (x1 > >~
3 J I L2

(8) Determine the threshold value for eiqenvalue x ..>

(9) Compute Rank deficient method

m

jE~ =t P L j (157)

(10) Adjust the scalar pi to satisfy J(o0. ),J~i

(11) Initialize X(ktk) and ai M to go to step (2)
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In step (7), many of the computational difficulties with the rank

deficient method are involved with the large spread in the eigenvalues of M.

To avoid this inaccurate choice of Xm in step (8), Mehra [19] has suggested

that with a proper choice of xm, steps (9) - (10) are done and the cost

function value is computed. This same procedure is repeated until m = 2N

and a 6 is obtained producing a minimum cost function value. This is called

the sweep rank deficient method. Experimentally, when the number of unknown

parameters is small, then Mehra's method improves the convergence rate.

But, with a large number of unknowns, this method does not work because of

the large spread of eigenvalues. Instead, fixing a threshold value for m

is better even though the convergence rate is slow.

If the new cost is larger than the previous cost, the step size is cut

in half, setting pi in half in step (10). This same procedure is repeated

a given number of times. The reason for this step size cutting is the non-

quadratic nature of the cost function. Also, the constraint boundaries

for system stability are adapted to restrict the P matrix.

The values of X(kjk) and ai+l are stored to be initialized for the

next M measurements.

To escape from the computation loop, the gradient of J( ) is used

instead of testing the whiteness of the innovation process, which is fre-

quently used by many, since, in practice, the whiteness test may he ill-

conditioned.

3. ESTIMATION PERFORMANCE OF THE M-L IDENTIFICATION ALGORITHMS

In this example, the actual system is given by

X(k+l) = X(k) + rw(k)

z(k) = AX(k) + n(k) (158)
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where the numerical values are

-1 .9 L .5 1 ._5

A -[ 0 ]

V n=Ein(i)n(j)) 1.58[ ]01 E~w(i)w(j)1 16. (159)

This system is a coupled (2x2) system. The true Kalman gain, G, for (159)

is given 
G = [613064 

' 00 , .613064]

and the true innovation variance, VVV, is given

v0= , 6.45171]

For the (2x2) coupled system, the Kalman gain and the innovation variance

are decoupled.

Given initial values as

.15 55 0

o .15 .9 0 L .55]

the number of samples, K, is varied 100, 500 and 800.

The following Figures show the convergences for these three cases.
As we can see in Figures 5 - 6 , the convergence of the Kalman gain is more

sensitive to the initial guesses than the transition matrix. It will be

shown later in a (6x6) decoupled case that accurate initialization is re-

quired for the Kalman gain to ensure convergence. In Figure 6, the greater

K becomes, the smaller deviation the innovation variance has. The calcu-

lated ' for K = 800 is closer to zero than K = 100. The cases of K = 500
and K 800 produce little difference in convergence.
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Next, a (6x6) decoupled case is considered for K = 100 and K = 400.

As previously mentioned, the decoupled system can be considered as a SISO

system in terms of identification.

Consider the (3x3) SISO system as

X i (k+l) 0 €2 0 Xi (k) + Y2 1 i(k)

0 43 J [Y3

z(k) = ((,ll)Xi(k) + n.(k) (160)

where

I = .927374

2 = .881911

3 = .777768

Yl = 1.11439

2 -1 -. 40932

Y3 = .303111

and a = .499801

The true Kalman filter is calculated as

g = 1.27345

92 = -1.22638

93 = .147568

NSPB 10

TB = 1 E-04

OW = 2745

ENOPB = 10 DB

SFRDB = 0 DB

rA



Its signal-to-noise ratio is 2.0016. Initial values are given by

=.94

.9

*= .75
3
g= 1.15

9* =-1.3
2

g* .05
3.

The followinq tables are the convergence rates for this case.
TABLE 2

CONVERGENCE OF

Number.977 =8891776
Iteration = 977 2 0 811 3 = .776

K 100 K =400 K =100 K =400 K =100 K =400

20 .931523 .935041 .895041 .897619 .760655 .767604

40 .924770 .926946 .888993 .886991 .763505 .768910

60 .924573 .927804 .887979 .888393 .764136 .769145

80 .922456 .927717 .885366 .887378 .764860 .769262

100 921746 .928777 .883289 .888936 .765356 .769461
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TABLE 3

CONVERGENCE OF G AND V
VV

Number g 1.27345 g2 -1.22638 g3 .147569 u = .310170
Iteration 1 2 .3

K = 100 K = 400 K = 100 K = 400 K = 100 K = 400 K = 100 K = 400

20 1.24253 1.25424 -1.20901 -1.19561 .120113 .132448 .350336 .298245

40 1.25845 1.25510 -1.19354 -1.19486 .132420 .131805 .320628 .315488

60 1.26415 1.25776 -1.18818 -1.19220 .136563 .134330 .339504 .309749

80 1.26660 1.25737 -1.18578 -1.19261 .138356 .133823 .264868 .352092

100 1.26826 1.25984 -1.18420 -1.19015 .139419 .136201 .342379 .299879

Again, is observed the sensitivity of the Kalman gain initial value.

Experimentally, for a good Kalman gain initial value, the transition ini-

tial value is not overly critical. When the Kalman gain is large, this
dominates the sample space in calculating _J(_) and M. When the Kalman gain

is too small, it is difficult for the estimates to converge to the absolute

minimum value. Without good initial values, it is better to set a large

eigenvalue (103 - lO4 in (3x3) case) for the threshold and use the rank

deficient method instead of the sweep rank deficient method.
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SECTION IV

RESULTS

1. SIMULATION VERSUS CLOSED-FORM ERROR-RATE RESULTS FOR PSK AND FSK

The development of the Monte Carlo simulation for PSK and FSK in color-

ed multiplicative or colored additive noises was performed in Phase I of

the present contract and was reported in [1]. However, minimal simulation

results were reported therein. Those six figures are repeated here for

completeness and because of their relation to the present work.

Figure 7 shows the comparison of Monte Carlo results with closed-for41

results for PSK in white noise only. This curve verified that the Monte

Carlo simulation routine was operating properly.

Figure 8 shows the variation of Monte Carlo error rate for PSK in

275 Hz. colored noise as a function of modulation index. This curve showed

that the transmitted signal must have a residual unmodulated carrier compo-

nent to enable the IDEI detector in colored multiplicative noise.

Figures 9 and 10show Monte Carlo results for PSK and FSK, respectively,

in heavy multiplicative noise. The cases were set as though the diffuse

multipath reflection were equal in strength to the direct path (MPR = 0 dB).

For these cases any additive colored interference was essentially removed

(SJR = 53 dB). These results were analyzed in [1] and [12]. The expected

3-dB difference in white-noise only E/N0 performance [20] is due to the

different values of correlation coefficient, p, in (53).

Figures lland 12 show a comparison of Monte Carlo and closed-form

results for PSK and FSK, respectively, in colored plus white additive inter-

ference. Here the Monte Carlo results are plotted against the closed-form

solid curves. In the FSK case the standard detector was noncoherent in the

simulation, while the solid curve is for a standard coherent detector.

These results were analyzed in [1] and [12].

Figure 13 is the first set of results not previously documented. Here,

PSK is subjected to strong narrow-band additive colored interference plus

white interference. The ratio of colored interference to desired signal is

23 dB (SJR = -23 dB). The error rate is plotted versus signal energy per

symbol to white noise spectral density (E/N ). The ratio of interference

bandwidth to symbol rate is

BW 275
BR 2500
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The simulated results are plotted next to the closed-form solid curve.

Note that the discrepancy between simulated and closed-form results here

amounts to 1-2 dB of signal to white noise ratio, or a factor of 5-6 in

error rate. The explanation is that when the ratio of colored interference

to desired signal becomes quite large (SJR = -23 dB), the detection errors

are no longer independent and isolated. Rather, detection errors occur

in "bursts" of 5 to 7. This is a consequence of improper decision-directed

re-initialization of the tracking filters after a single detection error.

In Figure 13, the standard detector error rate was 0.5 and was not plotted.

In Figure 14, the Monte Carlo and closed-form results are compared

for the IDEI detector for FSK in heavy additive colored plus white inter-

ference. Again, the agreement between closed-form and simulation is good.

However, the poor performance of FSK in Figure 14 relative to PSK in Figure

13 is surprising. This is the difference alluded to in Section 11.2., on

page 18. Figure 15 shows a similar FSK run for SJR = -20 dB with the

standard FSK detector closed-form and simulation results also plotted. It

is apparent that the FSK results are valid. However, the difference between

PSK and FSK results is not explainable on the basis of signal and noise

spectra, as noted in section 11.2.

Figures 16, 17, and 18 show the qualitative relationships between the

PSK and FSK signal spectra and the colored noise spectra. In Figure 16 is

shown the PSK spectrum (low-pass) for a 2500 symbol per second signal.

Superimposed are narrow-band and full-band colored noise spectra for SJR =

-5 dB. The noise bandwidths are 275 Hz and 2744 Hz, respectively, which

yield bandwidth to symbol rate ratios of BW/BR = 0.109 and BW/BR = 1.09,

respectively. As detailed in [1], the colored noise is generated from a

filter having three real poles and one real zero (in the s-plane). Any

desired noise bandwidth is obtained by simply scaling the poles and zeros

by the same factor. The colored interferences used in Figures 9-15 had the

spectral shape of the narrow-band noise shown in Figures 16 and 17. It is

shown in Figure 16 that this type of colred interference decays in frequen-

cy as 1/f4 , whereas the PSK spectrum decays as 1/f2.

In Figure 17 is shown the FSK signal spectrum corresponding to the

model of equation (33). This spectrum also decays as 1/f 2 .
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In Figure 18 is shown a second type of available colored interference

spectrum. This spectrum is synthesized by using 3 real poles and 2 imag-

inary zeroes (in the s-plane). The resulting null in the interference

spectrum was placed coincident with the first null in the PSK signal spec-

trum. The interference spectrum decays at the same rate as the PSK spec-

trum, i.e., as 1/f2 . It was hypothesized that such an interference spec-

trum would be a "worst case" for a PSK signal.

Figure 19 shows IDEI results for PSK and FSK in fullband interference

of the first kind, which decays as 1/f4 . Here the colored interference

was as in Figure 16 with a strength 20 dB greater than that of the desired

signal. Again the comparison of Monte Carlo and closed-form results is

good, under the observation that the IDEI errors are occurring in bursts.

2. IDEI CLOSED-FORM PERFORMANCE FOR PSK IN COLORED INTERFERENCE WITH

PERFECT IDENTIFICATION

At this point in the investigation, it was decided to devote the re-

maining time and resources to an in-depth examination for one signal type

and one interference type. The signal chosen was PSK. The concentration

on additive colored interference rather than multiplicative interference

was implied by two factors. First, behavior of the IDEI detector for multi-

plicative noise has been rather thoroughly investigated previously, as re-

ported in [3]. Also, the initial results presented in Figures 9 and 10

for PSK and FSK were not qualitatively different than those in [3] for a

hybrid PSK-FSK 4-ary modulation. Second, the results for additive colored

noise are of great interest in the context of radio jamming.

Figure 20 shows the first closed-form results for IDEI error-rate for

PSK in additive colored plus white noise. Here, error rate is plotted

versus a normalized colored interference bandwidth. The abscissa is the

ratio of colored interference (equivalent) noise bandwidth to symbol rate,
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in decibels (10 loglo(-)). A family of IDEI curves is plotted with E/N°
as parameter. The ratio of colored interference to desired signal power is

20 dB (SJR = -20 dB). The performance for the standard PSK detector is

also plotted for comparison.

Figure 20 shows three general results of considerable interest. First,

there is a worst case colored interference bandwidth which maximizes the

error rate for each value of E/No. Second, the worst case maximum error

rate decreases and the worst case bandwidth increases with increasing E/No.

Third, for a given value of E/N , the IDEI detector error rate converges

to that of the standard detector as the colored interference bandwidth

increases.

An obvious inference to be drawn from Figure 20 is that the IDEI

detector provides the most "gain" over a standard detector when the colored

interference is narrow-band compared to the desired signal. A second

inference is that under mini-max, or worst case, conditions, the IDEI detec-

tor still provides some gain over a standard detector. Two subsidiary

figures, derived from Figure 20, illustrate these points.

In Figure 21 is plotted the IDEI error-rate performance versus E/N0

for PSK subject to 20 dB colored interference having normalized bandwidth,

BW/BR = 1/5. For each IDEI error-rate point plotted in 21 it may be deter-

mined from 20 what value of BW/BR is required for the standard detector to

yield an equal error rate. Thus, the required spectrum-spreading factor is

determined and plotted in Figure 21. For BW/BR = 1/5, it is seen that the

IDEI detector yields the same performance as would be obtained from a stan-

dard detector using spectrum-spreading by a factor of 1O3 - 104 for error

rates of 10-1 - 10.

In Figure 22, the worst-case IDEI error-rates are plotted versus E/No .

Each IDEI error-rate point corresponds to a unique value of BW/BR. The

corresponding standard detector error-rate points are also plotted. It is

seen that even under worst case conditions the IDEI detector has a 10 dB

advantage over the standard detector in terms of white noise E/N0 ratio.

For information purposes, the worst case bandwidth for the colored inter-

ference is plotted versus E/No. This plot shows that the worst case inter-

ference bandwidth for the IDEI detector is always considerably greater than

the desired signal bandwidth. The converse is true for the standard detec-

tor, for which the worst case interference is narrow-band. These
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observations are based on the assumption that the interference source does

not possess the sophistication to generate a spectrum which duplicates the

signal spectrum.

Figure 23 shows the results of the first attempt to evaluate the per-

formance for colored additive noise of the second kind, whose spectral shape

was shown in Figure 18. It is known that the observed saturation of the

error-rate versus E/N0 occurs when there is an unmodelled disturbance pre-

sent which has not been included in derivation of the detection algorithm.

It was hypothesized that the unmodelled disturbance was aliasing, due to

the considerable high frequency content of the colored interference. Thus,

the case for SJR = -5 dB was rerun with sampling rate increased by a factor

of 10. The results are shown in Figure 24, confirming aliasing as the un-

modelled disturbance.

In Figure 25, IDEI results are plotted for PSK subject to both types

of full-band colored interference with SJR = -20 dB. The better performance

resulted for the full band interference spectrum with BW/BR = 1.09 which

decayed as 1/f4 . The worse performance resulted for the interference spec-

trum which decayed as 1/f2 . It is not known whether or not the slight

indication of saturation for 45 dB < E/N is due to aliasing.

Figure 26 shows the results of the first attempt to evaluate the IDEI

error-rate as a function of the ratio of colored interference to desired

signal power (SJR). Families of curves were plotted with normalized inter-

ference bandwidth (BW/BR) as parameter. For each value of BW/BR a different

value of E/N0 was used. This was because certain combinations of BW/BR,

E/N , and SJR caused the solutions on the 16-bit minicomputer to become

numerically unstable.

It was found that when cases were run where the ratio of interference

power to white noise power (in the interference bandwidth), J/N, was greater

than 60 dB, the numerical computer solution became unstable on the 16-bit

PDP 11/40. This did not occur on the 60-bit CDC-6600. However, it was

decided to limit the runs to conditions for which J/N < 60 dB. The ratio,

J/N, is related to the other parameters as

J _ (E/No 0

(BW/BR) SJR L(AO) (161)
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In (161), L(A¢) is the modulation loss defined in (56).

In Figure 26, the values of E/N used were those required to set J/N =

60 dB when SJR = -35 dB. Under these conditions, it appears that the error

rate performances of both the standard and optimum detectors increase as

the colored interference bandwidth becomes greater. However, this apparent

performance increase is illusory and does not occur if E/No is held constant

as per Figure 20.

Figures 27 through 30, inclusive, show a series of four families of

error-rate curves for standard and IDEI detectors. Each figure contains

results for four values of normalized interference bandwidth, BW/BR = 0.109,

1.09, 10.9, and 109., respectively. From figure to figure, E/N is varied

in 10 dB steps, from 17 in Figure 27 to 47 in Figure 30.

Note that in Figures 27 through 30, the standard detector performance

is the same. This is because the standard detector error rate is dominated

by the colored interfering process, rather than the white noise. The IDEI

error-rate performance is seen to vary from figure to figure, depeiaing on

E/No . The general trend displayed is that the high-frequency tracking
0"

performance of the IDEI detector becomes better as E/N0 increases. In all

cases the IDEI detector performs better than the standard. However, for
a particular value of colored interference bandwidth, the margin of perfor-

mance of the IDEI over the standard detector is a function of E/No.

Another method for comparing the performances of the IDEI and standard
detector is to hold constant the ratio of colored interference power to

white noise power in the bandwidth, l/T = BR, of a filter matched to the

desired signal. The ratio, JT/N0 , is related to the other parameters as

JT (E/N0 )
N - L(A ) - SJR

Figure 31 shows the results for four values of normalized banJwidth

for the quantity JT/N0 held constant at a value of 70 dB. This shows rather

clearly the SJR performance of the IDEI detector vis-a-vis the standard
detector as a function of colored interference bandwidth.
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Comparing (161) and (162) it is evident that

J JT/N0
N BW/BR (163)

Now, it was conjectured that the error-rate performance of the IDEI detec-

tor is controlled by the ability of the filter to track the colored inter-

ference in white noise. Hence, the error-rate should be a function of J/N.

Since (163) shows that J/N is a ratio of JT/N and BW/BR, the same error-
rate should be obtained so long as the ratio is maintained constant. To

demonstrate this empirically, the cases shown in Table ( 4) were computed.

TABLE 4

P(e) INVARIANCE

I

SJR dB 1 -16 -16 -16 -16

E/N0 dB 42 37 32 27

T 1.27 x 10-  4 x 10-4  1.27 X O 4 x 10-

BW/BR 3.46 1.09 0.346 0.109

JT/N0 dB 55 50 45 40

P(e) 2.34 x 10-7  2.50 x 10-7  2.60 x 10-7  2.56 x l0 7

It is seen from Table 4 that over a wide range of normalized bandwidth,

it is J/N which controls the error-rate, P(e). Some computational advan-

tage may be gained from this result by realizing that results for greater

values of BW/BR, which normally require more samples per computation, may
be obtained by fixing BW/BR and reducing JT/No .

Two final sets of error-rate results for perfect identification were

obtained for colored interference of the second kind which decays as 1/f2.
In Figures 32 and 33 are plotted the error-rate results versus SJR for the

IDEI and standard detectors. In Figure 32, E/N is held constant at 47 dB.

In Figure 33, JT/N0 is held constant at 70 dB. Both curves show that the

IDEI detector has a 15-20 dB advantage over the standard detector, depend-

ing on the basis of comparison, for this "worst-case" colored interference.
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3. ERROR-RATE SENSITIVITY OF IDEI DETECTOR TO IDENTIFICATION ERROR

The next step in the evaluation of the IDEI detector was to determine

the loss in error-rate performance when identification of the required

colored interference statistics was less than perfect. It was desired to

perform some sort of controlled sensitivity study, varying only one statis-

tical parameter at a time, rather than immediately trying the ML identifi-

cation algorithms.

It was determined in Section III that the necessary statistical quan-

tities to be identified are the state transition matrix, ', and Kalman

(Wiener) gain matrix, G. Now, 0 is the transition matrix of the interfer-

ence generating model. Given the order of the interference model, 0 deter-

mines the structure of the colored interference proces, and its equaivalent

noise bandwidth, BW. Thus, a controlled method for varying o*, the identi-

fied matrix, is to obtain it from a frequency-scaled version of the "true"

interference spectrum which produced 4. In terms of the S-plane poles and

zeroes of the continuous-time generator of the colored process, frequency-

scaling simply means multiplying all poles and zeroes by the same constant,

K, where

BW* = K BW (164)

and BW* is the bandwidth of the identified process. This is the method

used herein to set up o* for the Wiener filter.

Given that 0* is related to the frequency-scaled interference spectrum,

as above, the only other unknown statistic for the colored interference is

its amplitude scale. Let J be defined as the mean-squared value (variance)

of the true colored interference process and J* as the identified value of

J. Given J*, o*, and the true white noise level (E/N0 ), the identified

Kalman gain, G*, may be easily calculated from the Kalman filter equations.

This is the method used herein to set up G* for the Wiener filter. Symbol-

ically,

{BW*, BW) . 4*
{J*, J, €*, E/N0} 4 G* (165)

Note that this controlled method for calculating o* and G* is not equiva-

lent to the M-L method of Section III. There, the computation algorithm

have no knowledge of white-noise level (E/No).

0
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The procedure for evaluating the sensitivity of the error-rate to

errors in 0* and G* is as follows. In one case, BW* = BW and t* = o. The

closed-form error-rate is then computed for various specifications of J*/J,

using the resulting G*, derived as above. In the other case, J* = J. The

closed-form error-rate is computed for various specifications of BW*/BW,

using the resulting 0* and G*, derived as above.

Figures 34 and 35 show the results for a case where the IDEI detector

is implemented with the true o* = e, but G* is in error according to a

scaling error in the strength (variance) of the colored noise process

specified by J*/J. The error rates are presented for SJR = -20 dB and

BW/BR = 0.109 which is the narrow-band interference of the first kind.

The results are plotted versus E/N . These two figures show that the first

5 dB of error in colored interference strength cost only about 1 dB in terms

of E/N0 performance. Beyond 5 dB, identification error is much more

costly if the colored interference strength is underestimated, rather than

over-estimated.

Figure 36 shows a detailed examination of the behavior of the various

elements which make up the argument of the error rate, P(e). In terms of

the expression for P(e), given in (11), P is the mean, as calculated from

(7) and o is the standard deviation, as calculated from (8). The quantity,

u, is the actual tracking error variance, which is V (0), as calculated

from (9). It is seen that neither U nor a reach extreme values for perfect

identification, when J* = J. However, the ratio, /o, does maximize for

J* = J. Also, the interference tracking error variance, u, does minimize

for J* = J.

It is possible to define a "Detection Loss" factor as the ratio of the

maximum value of p/a to its value as obtained for any particular value for

J*/J. This factor is plotted in Figure 37. Here the penalty for under-

estimating the strength of the colored noise process is clearly shown.

Figures 38 and 39 show cases similar to those of 34 and 35 where now

the plot is versus SJR with JT/N held constant at 60 dB. The same conclu-

sions reached previously are also supported by these figures. Figure40

gives the accompanying plot of detection loss.

Figure 41 and 42 are for the same case as 34 and 35 where now the

detector is implemented for J* = J but o* (and G*) are in error according
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to a scaling error in the bandwidth of the colored noise process, speci-

fied by BW*/BW. The error rates are again plotted versus E/N0 for SJR =

-20 dB anu BW/BR = 0.109. These two figures show that bandwidth identifi-

cation error is much more costly if the colored interference bandwidth

is underestimated, rather than overestimated. Figure 42 shows that when

overestimating the bandwidth the penalty becomes, asymptotically, just

that due to the extra white noise which is admitted to the detector.

Figure 43 shows the variation of the error rate argument components,

as was done in 36. The same behavior obtains for identifying bandwidth

as for strength.

Figure 44 shows a plot of detection loss versus error in bandwidth

identification. It is obvious that the margin for error in identifying

bandwidth is smaller than that for identifying strength.

Figures 45 and 46 are for the same case as 40 and 41 where, now, the

plot is versus SJR with JT/N0 held constant at 60 dB. The same conclusions

reached previously are also supported by these figures. Figure 47 gives

the accompanying plot of detection loss.

Figures 34 through 47, inclusive, have presented an evaluation of the

sensitivity of IDEI error rate to error in identifying the strength and

bandwidth of the colored interference process. An initial conclusion to

be drawn is that the IDEI detector algorithm is reasonably robust in terms

of identification error, so long as the filter functions, 0* and G* are

synthesized in a deterministic manner, based on identification of strength

and bandwidth of the colored interfering process. Such an identification-

synthesis procedure is ad hoc and not based on a straight-forward applica-

tion of estimation theory. Before proceeding further with it, it was de-

cided to evaluate a more rigorous approach, that of Maximum-Likelihood

Identification.
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4. ERROR-RATE PERFORMANCE OF THE ML IDENTIFICATION ALGORITHMS

In Section 111.3., results were given for the performance of the ML

identification algorithms in terms of convergence of the estimates of the

parameters G and 0 of the filter to be identified. However, in the present

problem, the filter being identified is embedded in a signal detector.

Thus, a further measure of identification performance is the error rate of

the associated detector.

The 6x6 example of Section 111.3. may be used here. The actual data

generator structure is

Yl= 1.11439

1Y2 = 1.40932 l = 2= 3 0.

0.303111

= 0.927374

2 = 0.881911

43 = 0.777768

The above structure results for the following specification of the signal

communication problem:

Number of Samples per Symbol (NSPB) : 10

Number of Symbols per Second (BR) : 25 x l03

Signal to Colored Interference Ratio (SJRDB) : 0 dB

Colored Interference Bandwidth (BW) : 2743 Hz.

Energy per Symbol 1 Noise Spectral Density (E/No ) : Variable

Table 5 shows error rate results obtained using identified filter

structures, for values of E/N0 between -15 dB and +25 dB in 5 dB steps.

For each value of E/N , identification was performed using 100 data samples

and 400 data samples. For both sets of data samples the number of iterations

was 100. The filter gains, g1 ' g2, and g3 were initialized using proper

values. The transition parameters, €I' ¢2' and b3' were initialized at

0.95, 0.9, and 0.75, respectively.
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TABLE 5

ERROR RATE PERFORMANCE OF SJR = 0

True Data Estimates 0 Estimates G* Error Rate

E/N° = -15 dB K = 100

r 8.88786 €1 .962275 g1 -.188813 x 10-1

1 = .174635 x 10-1 02 = .909611 .2 =  129918 x 10
-2

92 = -.126974 x 10-l €3 = .749812 93 = .155987 x 10 p(e) = .406673

.04189 x 10-2 K =400

p(e) = .403394 0I = .922637 g, = .525372 x 10-
2

2 = .905056 g2 = -.694674 x 10
-2

$3 = .749797 g3 = .122717 x 10-  p(e) = .403501

E/N° = -10 dB K = 100

r = 4.99801 = .933537 g, = .462744 x 10-

-
= .501310 x 10-  2 = .908293 2 -.404340 x 10-

92 = -374055 x 10 1 3 = .749640 93 = .306828 x 10-2 p(e) = .339498

93 315661 x 1O- 2  K =400

p(e) = .339301 1I = .915837 g, = .407356 x 10-1

2 = .907796 92 = -.298345 x 10
-1

$3 = .750128 93 = .187085 x 10-1 p(e) = .339731

/N = -5 dB K= 100

r 2.81059 1 = .922487 g, = .119131

1 - .130345 ¢2 = .905116 92 = -.962566 x 10- 1

92 -.102093 $3 = .799720 g3 = .876633 x 10
-2  p(e) = .254793

3 911142 x 10
-2 K = 400

p(e) = .253087 = .928011 g, = .120169

2 = .897036 g2 = -.942549 
x 10

-1

$3 = .800237 93 = .133610 x 10-1  p(e) = .253378
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True Data Estimates t* Estimates G* Error Rate

E/No = 0 dB K =100

r = 1.58051 €I = .931785 g, = .324643

gl = .303158 02 = .909121 g2 = -.284925

g2 = -.253838 03 = .752618 g3 = .448313 x 10 p(e) = .161505

g3 = .246645 x 10 K = 400

p(e) = .159826 01 = .928605 g, = .317638

42 = .894738 92 = .278292

03 = .754331 93 = .414739 x 101 p(e) = .160246

E/N =5 dB K =100

r = .888785 01 = .932805 g = .664334

= .642817 02 = .911643 g= -.556296

92 = -.578550 03 = .749511 93 = .558376 x 10-1 p(e) = .820992

g3 = .623676 x 10-1  K =400 x T0-

p(e) = .800263 x 10 O . = .924907 g, = 650377

02 = .886843 92 = -.569073

03 = .752203 g3 = .520069 x 1O-1 p(e) = .803929

x 10-
E/N =10 dB K = 100

r = .499801 01 = .921746 g, = 1.26826

g = 1.27345 02 = .883289 g2 = -1.18420

g2 = -1.22638 03 = .765356 93 = .139419 p(e) = .263344

g3 .147568 K =400 x 10

p(e) = .255149 x 10-  = .928777 91 = 1.25737

02 = .888936 92 = -1.19015

03 = .769461 3 = .136201 p(e) = .257505

x 10"

Table 5. (Continued)
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True Data Estimates p* Estimates G* Error Rate

E/N° = 15 dB K = 100

r = .281059 1 .886738 g = 2.27338

l= 2.39697 02 = .831381 g2 = -2.42825

92 = -2.448 03 = .774201 93 = .259117 p(e) = .346750

93= .3276 K 400 x 10

p(e) = .248033 x 10-2 I = .938559 g = 2.3178

02= .893108 92 = -2.37971

3 751622 3 = .342483 p(e) = .261718

x 1O2

E/N° = 20 dB K = 100

r .158051 .94344 g1 = 4.1031

g1 = 4.32571 2 = .894073 g2 
= -4.79684

92 -4.63936 03= .752790 93 = .50257 p(e) = .468965

93 .683923 K = 400

p(e) = .116825 x 1 O-4 1 = .942188 g, = 4.17752

2 = .892235 g2 = -4.79354

¢3 = .747709 93 = .500835 p(e) = .221338

E/N = 25 dB K = 100

r = .888785 x 10- 1 €I = .923291 g, = 7.36274

9= 7.51162 02 = .875451 q2 = -8.43728

9= -8.38364 03 = .771556 93 = 1.21118 p(e) = 0

g3 = 1.34467 K = 400

p(e) = 0. OI = .918802 g, = 7.36437

¢2 = .870304 92 = -8.43565

03 = .774477 93 = 1.21267 p(e) = 0

Table 5. (Continued)
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When the filter gains are large, they dominate the Information Matrix.

In such cases, the trancition matrix values, €I' 02) 03 have lesser effect.

The filter gains increase as the ratio of colored noise to white noise

increases. Thus for a fixed ratio of signal to colored interference

(SJRDB = 0 dB), the filter gains increase with E/N . Since the error rate

decreases with E/No, it is for low error rates that good initialization of

the filter gain identification is needed.

When E/No = 20 dB, estimates of f and G closely approximate the true

values, and yet the error rate performance is poor. This is because the

error rate is determined by €* and G* according to the function EP*(I - G'A),

as in equations (8) and (9). Thus, when IG*I is very large, the error rate

is very sensitive to identification error. Conversely, when IG*I is quite

small, even quite approximate estimates give good error rate performance.

Another example case was examined where the generator structure was

= .1439

Y2 = -14.0932

Y3 = 3.03111 l Z X2 = X3 = 1.0

01 = 0.927374

02 = 0.331911

03 = 0.777768

This structure resulted from the following specification of the signal

communication problem:

Number of Samples per Symbol (NSPB) 10

Number of Symbols per Second (BR) 25 x l03

Signal to Colored Interference Ratio (SJRDB) : -20 dB

Colored Interference Bandwidth (BW) 2743 Hz.

Energy per symbol 1 Noise Spectral Density (E/N 0 Variable

Table 6 shows the results for two values of E/N0 , 5 dB and 30 dB.

Again, very accurate initialization of the filter gain identification
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algorithms is required for convergence. In this case, the ratio of colored

interference to white noise is 20 dB greater than in the previous example.

Thus, the filter gains are greater by roughly a factor of ten.

TABLE 6

ERROR-RATE PERFORMANCE FOR SJR = -20 dB

True Data Estimate o* Estimate G* Error Rate

E/No = 5 dB K = 200

r = .888785 I = .923614 g, = 7.41383

g 1 7.51253 ¢2= .875887 g2 = -8.43760 p(e) = .286132

2= -8.38495 3 = .770917 93 = 1.16079

3= 1.34489 K = 400

p(e) = .257187 ¢1 = .920892 91 = 7.41404

¢2 = .871545 g2 = -8.435991 p(e) = .282038

¢3 = .772184 93 = 1.16233

E/No = 30 dB K = 200 g1 = 60.8014

r = .499801 x 10 I = .944248 g2 = -74.99861

g = 60.4589 *2 = .894856 93 = 15.0013 p(e) = .393391 x l0-5

= -74.7359 03 = .759R42

93 = 15.1978 K = 400

p(e) = 0.0 € = .946587 g, = 60.8012

¢2 = .895022 92 = -74.9988

3 = .757249 93 = 15.0012 p(e) .953674 x 106

The previous two examples show that the identification algorithms be-

come more difficult to initialize as the ratio of colored noise to white
noise becomes greater. However, these are precisely the conditions under

which accurate identification becomes less critical. It has been shown

above that so long as all elements in G* are increased by the same factor

the only effect on the error rate is that of letting additional white noise

into the system. Quite large identification errors may be tolerated in this

manner.
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SECTION V

RECEIVER DESIGN AND PRACTICALITY EVALUATION

1. BASIC RECEIVER SYSTEM DESIGN

Figure 48 shows the basic receiver block diagram. It includes the

two decision-directed (D.D.) filters for tracking both additive and multi-

plicative colored interference. These two filters provide inputs (the

tracking error waveforms) to the bit decision circuitry. Also included is

the identification circuitry which processes the received signal to provide

the constants (perhaps slowly time-varying) for implementing the filters.

The identification circuitry is also decision-directed. For this design,

it is assumed that timing and bit synchronization references are provided

externally. In the final design, bit synchronization will necessarily

also be derived directly from the received signal. The method for obtain-

ing bit synchronization was not considered in the present investigation.

The question of feasibility of the present design breaks down into

more or less separate questions about the theoretical feasibility and the

hardware feasibility. A critical part of the theoretical feasibility ques-

tion concerns the exact implementation of the identification circuitry.

This is dealt with, separately, below. The hardware feasibility question

concerns the implementation of both the identification circuitry and the

tracking filters. In particular, the hardware question is that of how

to implement sampled-data hardware at high sampling rates. This latter

question was originally posed in [1].

Another part of the theoretical feasibility question is that of deriv-

ing a carrier phase reference for the tracking filters. This question is

not critical in the context of multiplicative noise (multipath). In [3]

it was shown that a multiplicative noise tracking receiver also tracks out

the phase error of a carrier phase-locked loop subjected to the multiplica-

tive noise environment. It is therefore conjectured that a receiver with

tracking capability for both multiplicative and additive colored noise will

track out the phase error of a carrier phase-locked loop subjected to the

additive noise environment. However, the question may be critical for an

interfering c.w. carrier which is close enough in frequency to the trans-

mitted carrier to capture the phase-locked loop. The question of the effects

of additive interference, c.w. or noise-like, on the carrier tracking loop

should be investigated for the IDEI detector.
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2. IMPLEMENTATION OF IDENTIFICATION

From [1], the optimum set of required identifying algorithms are those

which yield minimum mean-squared-error between the true and identified

structure of the colored interference generator. Also, because the IDEI

tracking algorithms are sampled-data recursive, memory requirements can be

minimized if the identification algorithms are also sampled-data recursive.

The algorithms actually developed during the present investigation

were based on the Maximum Likelihood estimation criterion, rather than the

Conditional-Mean criterion, called for in [1]. These M.L. algorithms do

not necessarily yield minimum-mean-squared-error for estimation of the

structure parameters. Neither are they completely recursive, since they

operate on batches of received data vector measurements. The reason that

batch-M.L. identification was used is that there existed previous well

documented theoretical work in the general area. The previous work was

extended to the specific case of a coupled I-Q data vector, using the

Minimum Canonical Form for the interference generator which was originally

derived under this investigation.

The results of Sections 111.3 and IV.4 showed several interesting

facts. First, when the colored interference vector, y(k), was modeled as

Markov-l (the o- matrix is 2x2) the M-L identification algorithm converged

nicely to D* and G* with reasonable initialization of the estimates. How-

ever, when y(k) was modeled as Markov-3 (the 0-matrix is 6x6) extremely

accurate initialization was required for convergence. Secondly, it is

possible, even with good convergence, for the resulting error rate tQ be

poor, as for E/No = 20 dB in Table 5 on page 106. Thus it appears that

the IDEI tracking detection performance can have great sensitivity to the

structure of the filter as identified by the M.L. algorithms, even when the

convergence is quite good.

The possible poor error rate under ML identification should be con-

trasted with the good error rate sensitivity demonstrated in Section IV.3

where the identified filter structure was far removed from the optimum

structure. In terms of identification error the filter structure was poor

and yet the error rate remained good. What these results imply is that

there probably exists an ad hoc identification scheme which will perform

much better that the "optimum" M-L identification algorithm, so far as

minimizing probability of error is concerned.
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One such ad hoc scheme would be to model the possibly Markov-N dis-

turbance, y(k), as Markov-1 and use the simple 2x2 identification algorithm

to identify a "dominant pole" in the s-matrix and a dominant gain term in

the G-matrix. The actual Nth-order 4* and G* could then be synthesized

using a deterministic filter model such as Butterworth or Chebyshev.

Another ad hoc scheme would be to estimate directly the amplitude and

bandwidth of the disturbance, y(k), and deterministically synthesize a

filter for the identified amplitude and bandwidth process using a "design-

point" value for E/N° .

It is clear that further refinement of the method of implementing

identification is required before the IDEI detector can be stated to be

theoretically feasible for non-band-limited signals such as PSK and FSK.

Such further work should concentrate on a combination of sub-optimal iden-

tification of fewer parameters, coupled with deterministic filter synthesis.

3. HARDWARE PRACTICALITY

The key question about hardware remains that of fast sampled-data

processing. The tracking filters need not be overly complex, having, per-

haps, from one to three states per In-phase and per Quadrature vector ele-

ment per multiplicative noise tracker and per additive noise tracker.

However, the tracking filters must process samples at a much higher rate

than the Nyquist rate, at least for non-band-limited PSK and FSK signals.

Also, the identification processor must accept samples at the same rate

during the interval of time over which it is collecting data. It does not,

necessarily, need to process the data at the same rate as the recursive

tracking filters. Thus, the practicality of hardware is mainly to be det-

ermined by the implementation of the fast tracking filters. The required

processing speed is proportional to the bandwidth of the disturbance being

tracked. For narrow-band disturbances and symbol rates less than, say,

2400 BPS, the processing speed may be achieved using standard digital hard-

ware. For wide-band disturbances and high data rates, CCD filters may be

applicable. A practical hardware design will be completely dependent on

the signalling environment and interference scenario.
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SECTION VI

CONCLUSION

This report has documented the results of a fourteen month effort to

determine performance boundaries for Integrated Detection, Estimation,

and Identification. The best performance of the IDEI detector for perfect

identification has been determined using PSK and FSK signal modulation and

the probability of error performance criterion.

It was shown that the IDEI algorithms with perfect identification nro-

vide performance which is orders of magnitude better than that of standard

detectors optimized for white noise only, when the additive and/or multi-

plicative interference is colored. Furthermore, it was shown that the

optimum performance degrades smoothly with increasing error in identifi-

cation of the strength and/or bandwidth of the additive colored process.

A most interesting result was that the error-rate performance of the

IDEI detector depends not only on the accuracy of identification but also

on the exact mechanism of the identification error. This result was dwelt

upon in Section V. This result implies that rigorously derived stochastic

identification algorithm may not be the best solution for the IDEI detector.

Another interesting result is the apparent better performance of PSK

over FSK in heavy additive colored interference. This was shown in Figure

13, 14, 15, and 19. Since both closed form and Monte Carlo results agreed,

the result is presumed to be valid. The physical explanation for this re-

sult has not been found during the present work.

Based on the results obtained in this investigation, the next steps

required for reducing the detector to practice become clear. First, a

better method for identifying the structure of the tracking filter is need-

ed. It is recommended that a procedure be used which is partly stochastic

and partly deterministic. The stochastic identification would be confined

to just the strength and bandwidth of the interfering colored process. The

tracking filter would then be deterministically synthesized to match the

identified process.

Second, the IDEI detector must be augmented with a carrier phase esti-

mator for obtaining the required carrier phase references. The effects of

the multiplicative and/or additive colored processes upon the carrier phase

estimate and also upon the detector error rate must be determined
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quantitatively. Alternately, it should be determined whether or not the

IDEI technique can be applied to incoherent detection wherein the carrier

phase dependency is deliberately averaged out of the detection algorithm.

An intermediate step between the coherent and incoherent IDEI approaches

would be to determine if the coherent IDEI detector can be augmented to

obtain carrier phase from symbol to symbol, as in DPSK.

Finally, the method for maintaining bit synchronization and system

timing must be determined, implemented, and evaluated. It is felt that

this scheme will probably be an "early-late" implementation which is more

or less standard.

To summarize, it is felt that the IDEI detector has been shown to

possess sufficient performance properties to warrent further analysis,

design, and ultimate development. It is hoped that the effort to develop

the IDEI detector will be continued to fruition.
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APPENDIX A

DERIVATION OF THE PSEUDO-INNOVATIONS

AUTOCOVARIANCE FUNCTION

In Section II, the autocovariance function, Vc(j) for j.= 0, 1, 2,

was required to numerically evaluate the closed form expression for

error rate of the IDEI detector under mis-identification. The autocovari-
Tance function V (j) is the covariance, E{j(k)_L(k-j)), where t(k) is the

pseudo-Innovations process of a Kalman filter whose structure is not opti-

mum for the signal being filtered. Figure 1, below, shows the structure

of the actual generating model for the signal process, y(k), and the Kalman

filter using identified structure.

The equations governing the actual data generator are

x(k+l) = x(k) + rw(k); Vww(k) = I

Y(k) = Ax(k); Vnn (k) = Vnn

z(k) = y(k) + n(k) = Ax(k) + n(k) A-l

The Kalman filter equations are

x(klk) = x(klk-l) + G*j(k)

x(kIk-1) * x(k-ljk-l)

1(k) z(k) - A;(klk-l) A-2

In the data generator, the input driving process may be assumed to be

white, Gaussian, zero-mean, with unit variance. Also, the output matrix,

A, may be assumed known and fixed. Any particular autocovariance for Y(k)

may be realized through manipulation of only r, o, and N, the order of the

filter-generator. The additive white (receiver-generated) noise, n(k), is

modeled as having a variance, Vnn' which is not known, a Priori.

Since A is known, the only elements of the Kalman filter which need

be identified are the gain, G*, and transition matrix, 0*, which, latter,

is the counterpart of the 4-matrix in the generator. If G* is identified
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directly from the data, _(k), then the white noise variance, V nn' need not

be identified separately.

The state-prediction error is defined as

x ,(klk-1) x(k) - x(klk-l) A-3

The pseudo-innovations may be written in terms of the prediction error,

x(klk-l) as

4i(k) =A"(klk-l) + n(k) A-4

In the steady-state, y(k) and n(k) are zero-mean and so is 4(k).
Thus, the steady-state auto-covariance function for F}k) is given as

V () =E{4(k) T (k-j)}

+ AE["(klk-l)n T(k-j)}; 0 < j A-5

dent of w(k), then

_~k J (k-ijk-i-l) ;0 < j

j~) n(k-j) 0 0< j A-6

To evaluate the expectations in A-5 requires, first, the one-stage

evolution equation for.?x(kjk-l), which is obtained as follows.

x(klk-l) P *x(k-.ljk-.l)

= *[(k.l Ik-.2) + G*.i(k-l)]
D*X(k-..I k-2) +. o**[ - Ax(k-Ik-2)]

=D[ - G*A]x (k-lIk-2) + qo*G*[iix(k-.l) + n(k-l)]

0*[ - G*A~j(k-ljk-2) + o*G* x(k-l)
+ O*G*n(k-1) A-7
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Next, the one-stage evolution equation for x(kI k-i) is obtained as

"(kik-1) =x(k) - x(klk-1)

= 4x(k-1) + rw(k-1) - 0*1- G*Alx(klik-2)

- -D*G*Ax(k-.1) - 4*G*n(k-.1)

= -G*A][x (k1-l x(k-l Ik-2)]

-p[ - G*Alx(k-1) + [*+ Ao]X(k-l)

+ rw(k-l) - o*G*Ax(k.l) - b*G*n(k-1)

4,[ - G*AJ6x(k-1lk-2) + Atox(k-1) o*G*n(k-1)

+ rw(k-l) A-8

where cD* A4 A -

The i-stage evolution equation follows as

j -, k-i
'X(klk-l) [=*( - G*A]J x(k-j 1k-i-i) + I D( +

i=k-j

-G*A)] k-l- [Aox(i) - O*G*n(i) + rw(i)] A-9

It follows that

Ef~l-)X~-l--~ o( - G*A]j E{_X(k-jjk-i-l)

'T k- k-i-i
x(k-ilk-i-l1 I+ I o( - G*A)]

i=k-j

E{[A4 1(i) - As*G*n(i) + rw(i)],xj(k-i I k-j-)}

= [*(I - G*A)]j E0kjkjlni~-j--)

+ kX [$P*(l G*A)] k- - AtE{x(i )xT (k-jlIk-j-l)}
i=k-j A- 10
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wherein use has been made of the fact that

ix(k-jlk-j-1) i !(i) ; i k-j, k-j-i,..., k-I

'x(k-jlk-j-1) i i(i) ;A-11

Now, -1

XMi = k-i)x(kij) + Y, 4 ilti(e) A-12
(=k-j

and thus

Etx(i)xT (k-ilk-j-1))

= (i-(k-j) Efx(k-j) )U (k-j Ik-j-1)l + i- -

__ __ =k-j

rElw(-e)'x (k-i jk-j-i))

= ti-(k-j) E~~-)T(kikjl}

X(k-jlk-j-i) J w(t) k-j f t A-13

Substituting A-13 into A-10 gives

Ef~j-)x (kjk =-~ [4o*(I - G*A)]j E["(k-j 1k-j-i)

k-1 k-i-i
2(k-ilk-i-l)} + [0*(I - G*A)] A

i::k-j

0 i-(k -j) . ~~- T( - l - - A-i14

Now, the cross-variance term between x(k-j) and x(k-jlk-j-i) must be

computed.

Efx(k)'xT (kik-l)}

=E~x(k)[4o*(I - G*A)'X(k-.Ijk..2) + Avx(k-1) - o*G*n(k.i)

+ rw(k-1)] TI

=Ef[sPx(k-l) + rw(k-1)][(P*(I - G*A)"(k-ljk-2) +

+ AOX(k-1) + rw(k-1)] T

(continued)

123



- 4E{x(k-l)6xT(k-ljk-2)}(I - G*A )T.O*T + OE{x(k-1)

xT(k-l)IAO + rrT A-15

where use has been made of the facts that

Similarly,

E{'(kjk-l )x T(k)

- D G*A) E{x(k-ljk-2)xT(k-l)}4

+ AoE{x(kl)x T (k-1)}1,tT + PrT A-17

Equations A-15 and A-17 are recursive. Now define

E{x(k)'x (klk-l)} 4 V --(k) ; with steady-state solution,V

E{.~kj-l)j~k) V,%k' ; with steady-state solution, V-.xx xx

E{x(k)x (k)} V xx(k) ; with steady-state solution, Vx

A- 18
Then, it follows that

V xx(k) = -DV (k-l)o T + rr T

xx ~xx x

Vn(kM = 0V0(k-1)V- ( - G) T + *O (k-l) T + rr T
xx xxxx

A-i19
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Next, define

xx

Ef{i(kjl)i)T (k jlkij)) = VnA(k. k-i jk-1, k-i-i) A-20
xx

Then becomes

Vv,(k, k-jIlk-i , k-j-i) (o( - G*A)]JVm,(k-jlIk-j-1 ) +

+ ~'[0*( - G*A)j -- ( -kj V %(k-j)
i=k-j xx A-21

where V 1,,k-i) is the steady-state value defined by the recursion of A-19xx
and Vy-.(k-jjk-j-l) is the steady-state defined by the foliewing recursionxx

V, (klk-l) = E{"(klk-1)x-T(klki)

= E{i*I- G*A)x(k-ijk-2) + AUx(k-i) - o*G*n k-1i)

+ rw(k-i)] [T 1

t*( - G*)fx~-l- x *lk-) (I - G*A )TV*T

+ 0*1- G*A)E['(k-Ilk-2) T (k-I)A4J

+ Ejx(k-i)x T(k-lk-2)1 (I - G*A )T b + & E{x(k-l)

x T(k-l1DAoT + (v*G*V nnG* T *T + rr T A-22

which reduces to

V, (klk-l) - 01- G*A)Vn^(k-iik-2)(I - *)TO

+ AOv (k-1)0 T + 0*I- G*A)V%, (k-l)A4,T
xx xx

+ AO -,(k-1)(I G*A) T O + o,*G*V G* T OT+r
xx nnA-23

There remains to be evaiuated the term
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E{ (klk-i)n T(k-j)} = [0*(I - G*A)]J E{'(k-jlk-i-l)n T(k-j)}

k-i k-i-i
+ I o( - G*A)] E {[AOX(i) - o*G*n(i)

i=k-j

+ rwOi)]n(k-j)1
j-i

[,D*- - G*A)] o*G*V nn 0 < j A-24

The computational steps are now enumerated as

i) V (j) = AV'/,dk, k-ilk-i, k-ji1)AT
xx

j-1
-~*( - G*A)] 4**G*V n

ii) Vv%(k, k-ilk-i, k-j-i) = [*I- G*A)]JVvx"(k..jlk-j-1)

+ [0( - G*A)] k-l- . Al i-(k-j) .V --(-j
i=k-j xx

iii) V,"(klk-1) = 0~(1 - G*A)Vvx(k-llk-2)(I - G*A) T e +

"+AWV(k-i)Ap T + 0*(1 - G*A)V-% (k-l)A.T +

" A4DVxk(k-1)(I - G*A) T 0T + 4*G*V nnG* T 0T + rr T

iv) V 'X(k) = oVxk(k-1) -(I - G*A) T 0T + 4, x (kI))T + rrT

xx xxx

vi) V, xx(k = oV xx (k-l)o + rr T 0 < j

vii) V E& ) = AVkkklAT + V nj=0 A-25

Now, let V xx, V-., V -u, and Vvbe the steady-state soiutions of A-25.

Then the auto-covariance function of the pseudo-Innovations is
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V (j) -{(P( -*)J1 *~

AO - t - V 0A T _A[O*(I G*A)]j-l O*G*V ; < jxx nn

AVI%,A T +Vj = 0 A-26xx nnl

Equation A-26 may be put in a more informative form as

V (j) A[O*(I - G* sj 1(*[Vq/'A T G*(AV"bA T+ V )xx xx nnl

+A [,D*(I - G*A)1 1  - -i V xxA <j

AVV,'A T + V =0 A-27xx nnl

Note that from A-27, the conditions for &(k) to be white (or for the pseudo-
innovations to be the Innovations) is for

G*=V,-AT _A' A
=xx (AVx nn V,~) opt

ASD = 0 A-28

G* in A-28is the value for the Kalman (optimum) gain, G0 t
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APPENDIX B

STRUCTURE OF THE PSEUDO-INNOVATIONS AUTOCOVARIANCE

FUNCTION FOR±J GENERAL IN-PHASE/QUADRATURE PROCESS

Statement of the Results

The covariance of the 2-vector stationary Pseudo-Innovations Process,

&(k), is

V (j) =A[o*(I - G*A )]j3l0*[V"AT - G*(AVV\,A T + V )
xxxx nn

i-i j-l+ A{ [o*(I - G*A)) AO }V xA ..

for 0 <j

where

V-= D*(I -G*A)V-(~I - G*A) T 4*T
xx xx

+ AMV'I %(I -G*A) T~*T + (p*(I - G*A)V' U4T
xx xx

+ AP xxAOT + r r T + 4D*G*V nn G*T(D*T

V = 0V -.(I - G*A )O*T + OV AOT + r r T
xx xx xx

vE~~ T +rT

It will be shown that

(I - G*A) K 1 'IJ j
SQ1 S QQ [-5' S]

-D( G*A)

r- -
f fi,

, 0 F .... (a)
[-fI f
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From (a) and Lemmna 1, it will be shown by induction that

V% x xx! IV V.
Vv x Lv V & x V t vV-V V xxLv~ x x j v] lXx VXXI

It will finally be shown that

VNA T 2hI

G*(AV'k.A + n

whence V~v\"AT _G*(AV,%AT + Vxxx nni

It is also easily seen that if the In-phase and Quadrature processes are
independent (uncorrelated), then the off diagonal terms are null for

4*1- G*A), P* Vv'^, V %,, G*, HT and [Vvv%,A T _ G*(AV,vA T + V ) Thus,
Xx xxXX xx nn

for the uncorrelated case

For the correlated I-Q case, in general,

V (j) 0)

Supporting Lemm~as and Theorems

Lemmna 1

A and B are (nxm), (mxt) partitioned matrix respectively.
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A FAlI A27 FBI B 2

LA2  A1] ~:2 Bj

Then the resultant matrix C AB is also

c c2
LC 2 1]

pro FA A~ B B~ rA B A B2  A B +A B1
AB 1A2  F 12' 1 22u2 1 2 21J

LC2 cj

Lemma 2

Cep, e2 I~ Fbj B b [elb-e b', elb'+e b]

= e be1  eW'e1 + eW'e2 + e be2  (e2 + e2)b

= b~e1, e2 Fe 1

Le2i

Lemma 3
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[e1, e] b -b' uV u' b b] e'

Lb' b J ' [-b- Lb'. bLe2j

= [e1, e ] Fb +b' u' b u b u , Fb b s 12
b' 1-)bu' Wuvi-

= [e,, e2] bu Fb+b'u'bboub'+b'u b', bu &b'+b'u'b'W+bj'b-b'u b el
IbWu b-bub-b'u b'-bu b-, W'u b'-bub'+b'u b+bu Ie2]
L E F" dJ. i

= [el, eb+ ') b+ ')

= (b2 + b2U[,

Behavior of Kalman filter

~x 0, 0 1 x w(k
I.-- I + YN Y4j

LX (k)i - Oi 00 X j(k-1)j Y' -r1? )

Q q -Yi y

LY Y4j

B-I

FZ ( )-' 0 7X (k)i n~ (k)
(k I N IA 1' 1''

z(k)I - A N LX(k)J n (k)J B-2

X1i(k) = *X 1j(kl) + *XQ(k1) + -fjw(k-1) + Yjw2(k-1) B- 3
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X (k) X1 (k-1) + * XQ (k-1) - y,; w.,(k-1) + jw2 (k-1)

B-4
1, 2,..N

where 2 x N is the order of the system

1. i(klk-i) = i(k-i jk-l) B-5

X.j(kik-1) = .X.j(k-ilk-i) + Oxw (k-il-)B6

XQJ(klk-i)/ = - OIX j(k-i1k-l) + OjX (k-ilk-i) B-7

2. V(k Ik-l) = oV-vu~(k-i klk )oT + rrT -

Define 
1 I

V11() E{X 1(.) X1(.)}

V QQ(. E{X Q () X Q(.)}

VIQ(.) =E{X 1(.) X Q.)

X I(kjk-i) X I (k) -x(klk-i) B-9

X Q(klk-1) X XQ(k) Q 9(k~k-1) B-i10

More detailed expression is given

xjj(k~kki) = OX1j(k-Ilk-i) + OjXQ (k-ilk-i) + -yjwi(k-1) + Y.jw 2 (k-1)

B-i1

XQJ(kIkl1) =-O'X 1 (k-ilk-i) + O*iXQj(k-ilk-i) -y'wl(k-1) + YJw 2 (k-1)

B-i12

7V11 (klk-1) VI~l-
V-,-(k k-1)=VQkl-)81

xx VQ(kik-1) VQQ(klk-i)fB1
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[V1'(.) denotes the ith row jth column of V(.) matrix

X (klk-i)'
V11(kik-1) =E

1  [X1 (klk-1)~ , X1 (klk-1),
-' xji(klk-l)

XIN (klkl) 1XNkl-)
B-i14

therefore

[VI ~klk1)] E{Lp1X11(k-ljk-1) + 4!XQi(k-lk-l) + yw1~k-1)

+ Y W (k-)][ jX1j(k-ljk1) + 'X~~klkl + yjwl(k-1) + Y~w2 (k-1)]

- i.jEIX Ii(k-ljk-l ) X 1 (k-1Ik-i)1 + *.40 3E{X Ii(k-l lk-i)X Qj(k-iljk-i)}

+ C ' E{X (k-ljk-i)X1 (k-lk-i)} + OAKE{X (k-lk-i )XQJ(k-lik-l))
I i Qi I iQ

+ .Y.Y + Y!Y'.

-..[V' 3(k-l~k-i)] + OiC[V'6J(k-lfk-i)]
i Il 1 IQ

+ 010 [V1'J(k-lk-l1 + C40IjV'6(k-iik-i)] + YiYj + yY'Y.
i jQI 13 Q JQ i j

B-i15

Similarly

[Vj6J(klk-l)] E{[ 4iX1i(k-ijk1l) + OjXj (k-ilk-i) + yiwl(k-1) +

+ V I' 2(kl)][- E X I (k-ik- i) jX Qi (lk-)Yi 1k-i) Y jw 2 (k-)

+ .1.,EV4"(k-ljk-i)] -iy + yljB-17
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[V'63(klk-1)1 = E{[-O!X1i(k-lk-1) + o (k-ilk-i) - -y~w (k-1) +

+1w(k-l1[-o.X1 (k-1lk-1) + OjXQj(k-1Ik.1) - ylw (k-1) + Yjw 2 (k-1)]

-llk-1] - 00 [V~~k-lj - 0 &Ev'(k-Ilk-1)3
[~~V' i k-k1) 1 i IQ ii QI

[V'' 3(k-l1k-1)] + Yyl + yj Bl

3. G(k) = V'v^(klk-l)A T[V~ + AV'v,,klk-1)A TIxx nn xx

T1
V-"(klk-l)AT [:I~j:- VIQ(kjk-1 ~ 0

x Ni

-0 N ..

I I 3''kklX 9 "J=1k-)

i V1 3( Q1~ B- 19

xx N~ 3 kk-) N.

1 1 j= I

XN N ,N N j

= x ~ I vlij3(kkk-1)A. I V1 ~V$ (kik-)X
j 11 3~ IQ1

jj N 1 V jkklxgjIIv22.(kkxj B-2
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Equation B-20 can be rewritten as

8(k) =AV,,(klk-1)A Txx

F N N N N

i = YA.iA iVjj(kjk-1) , I A iA jV16J(klk-1)

INN N N
A.A. "(klk-1) , .AV 1 '3 (klk-1)

1 j QI i=1 j=1 l

b r 11  b IQ

b Q1  b QQ B2

-11 Fb1  1
() det(B) -b Q

where det(B) = b IIb QQ - b IQ b Q B-22

Combining equations B-19 and B-22, it is easily obtained

G(K) =VNv^(klk-1)A T B- (K)xx

1 [GI 
det B8 )Qb1

FN.. N i [N N
V VJ(kik-1)x. I V14j(klk-l)x. I I xx V'j(kk-1),

*j=1 j-1 j= j 1  1

N ,~N x Nkl -

j Vj(klk-l)x. 9 1 (k k-l)A. Li AjV -bkk~

detFB) .j= 1 ji -b. 1

I VQIJ3(kik-1)xj. j!V1,J(kk1 - ~ 1 Vx(kk-)
j1 j -

I VZx(kVQk-3k)A.l

ilN~ 'J ~VkI~j r~j(kjk-)Ai bQ
Q, QI

B-23
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N N

xjV1 j=1l-)X)

N( N li (klk-).)b Q N N* vj(kik-1)A )b QQ B-25

j=1 1

rN N
!!I I v I 3(kjk-l)X .)b1  + ( I "~ j-) bQ

N N N Nj
( jjkl-) )I + ( VI V i(klk-1)X.)b QQ B -26

9*QQ [ v Q j(kk-)j)b NIVQ~(klk-1)x )bQ
j1 3~ iQQ

NNjkl -) )b Q N N ikk-1 lQX B2

4. Now caclt V'(I k=[ - Y()AVQ'( k i B-2

v A rs11(k-) S1b + (k I)j~

NLQ~ NSQ (k kIA)
k Lk = Q [S1 (k) x bIQ +IIIk v1 Q kkB-27

4.Nwc lcuat QVk Sk)QI (K~)A] V Q(klk-1) jB8

[I~~~ - GA [GIW* .. 0



v 11(klk) = S 11 kMV 11 (klk-1) + S1Q (k)VQJ (klk-l)

VIQ (klk) = S11()VIQ (klk-1) + SIQ W)VQQ (kik-1)

VQ1 (klk) =SQ1 (k)V11 (klk-1) + S QQ (k)V Q1(klk-1)

vQQ(klk) = SQQWkVQ(klk-1) + SQ1(k)V1Q(kik-1) B-29

l- -G 1 N~ .~ if(N) NJ B-30

[S i (k)] = -aQ(i)Xj B-31

[S'i3(k)] = -gUJA3)X B-32

2. G(k) Mx Mx( Mx)nT (N

3. vi~k =[I- ()AV (2~)()

xx xx

when

k1

Initialize V--(010) =0.
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4a. [VI 3(110)] = y..1. + N

[vi~3 (1f0)] = Yi,+ Yy
Note ItV1'3  V6(1

[% i3(1 10)] = Yt + y 11 ) VQ W O

[V~3 l~o) = +v1ji (110) = -vii 3(lO)

b.

7N N - N N
B(1) = A.A.(y.y. + yy'.) Ai ~ A(-Yy + Yyjy)I

N N N N
X A~--Yy + yfiy'4, I T A.A.(y.Y. + yy.

1-1 j ~ -1 ___ Fbl 1j I

[b b-11 Note B 1() = 12 b

Lb bJ1 02-'2 b

N N1 _

GJ() (Y(yy. + y y ))b' (-y + yy4x)b)
j=1 13 1 3j= 1 13 13

N N b - ,
~j1 I + YY))b+ j1 +

FN N
G (1 +(X (Yyj 1 Y ) )b + ( X (-yy + yyj.)b

I(-Y~yj + YNy')Aj )b' + ( y (-YNY. + yy)x)b b2Th' 2

1 3= 1 3
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N N
G (1) +-l + yil)j(b)+ ( yi + +yy)X~

( Y~ j + YNY'.)) (-b') + I +'~~ +~!X~

j=1 yy

Note G if(1) G GQQ(1 G1Q (1) = -GQ1(1)

C. s11(1) = S QQ (1) v11(1i0) v QQ (110)

SIQ(1 = -SQ1(1) VIQ(1 0) =-VQ1 (1 Io)

v11(1iil) = s11(1v11 (1 10) + SJQ(1)VQJ(1 10)

VIQ (1I1) = SII(1V 1Q (110) + SIQ(1V QQ(1 j0)

VQJ(1l1) = SQ1(1)V11 (1 10) + s QQ (1)VQ1 (1lO)

V QQ (111) = S QQ(V QQ (110) + SQJ(l)V10(lIO)

V1101I1) = v QQ(111)

VIQ(1I1) = -VQ1(1l1)

k 2

a. [V'l3(211)] = yj+ .2[~(1)]+ (.p -

[V'61(211)] = (-yt~ + 0!,j)[V"J(111)J + 1 o + ~ E~(I)
I1 1 11. *1

-iy + Yy

+l. +-iy

[V'6J(211)] + O!O*[*j(1.) ++jj[6~ j)

Note V11(211) = V QQ(211) ~L 1 WIi (~,
V1Q(211) = -VQ1(211)
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b . B(2) =AV,-,(2li )A T

xx

C. S 1= L: s~ s~ QQ

V(3 13) =v 11(3 13) VIQ (3 13)

L VQI (313) V QQ (313)j

V 11(3 13) = V QQ(313)

vIQ (313) = -VQ1(313)

k k

From (15), (16), (17) and (18)

v I kk-i) V VQQ(klk-1)

vIQ (kikl1) -V VQ(kk)

From (21)

B(k) b [ b

From (24), (25), (26) and (27)
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6(k) = §fQ(k)

G IQ(k) -%1 (k)

From (29)

V11(klk) =VQQ(kik)

V IQ(klk) =-V Q1(klk)

k =k+l

ReaWhen the initialization V 11 0~) V QQ (110) and VIQ (110) -V VQI1 0)

is given it follows for arbitrary k that the diagonal elements of the parti-

tioned matrices are identical and the off diagonal elements are identical

but different in sign for V-.(klk-1), B(k), G(k) and VA&(klk). Thus are

the initial results proved.
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